
CoinFlipVRF

Smart Contract Security Audit

Prepared byBlockHat

August 7th, 2025 -August 11th, 2025

BlockHat.io

contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io


Document Properties

Client CoinFlipVRF

Version 1.0

Classification Private

Scope

TheCoinFlipVRF smart contracts (Audit andRe-audit smart contracts)

Link Address

https://sepolia.basescan.org/address/0x78F593

814f41e1a8c9E0084C2e8c30Db84fAcC26code

0x78F593814f41e1a8c9E0084C2e8c30Db84fAcC26

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

2

https://blockhat.io


Contents

1 Introduction 4

1.1 About CoinFlipVRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Approach&Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 RiskMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 FindingsOverview 6

2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 FindingDetails 8

A CoinFlipVRF.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A.1 Owner CanDrain Pool Funds [MEDIUM] . . . . . . . . . . . . . . . . . 8

A.2 UnboundedArrayGrowthWithout CleanupMechanism [MEDIUM] . 9

A.3 Griefing Attack via Incorrect Bet Limit Calculation [MEDIUM] . . . . 10

A.4 Minor Rounding Errors in Payout Calculations [LOW] . . . . . . . . . 11

A.5 Type Inconsistency in Function Parameters [LOW] . . . . . . . . . . 11

A.6 HardcodedGas LimitMayBecome Insufficient [LOW] . . . . . . . . . 12

A.7 Receive Function Lacks Tracking Despite Being Primary Funding

Method [LOW] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.8 DocumentationMismatch - FeePercentage [INFORMATIONAL] . . . 14

A.9 MissingAddress Validation in Constructor [INFORMATIONAL] . . . 15

A.10 Missing Events for Critical Parameter Changes [INFORMATIONAL] . 16

B CoinFlipVRFChecklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.1 Ownership Verification [INFORMATIONAL] . . . . . . . . . . . . . . . 17

B.2 HouseWallet Control [INFORMATIONAL] . . . . . . . . . . . . . . . . 17

B.3 Fee Enforcement [INFORMATIONAL] . . . . . . . . . . . . . . . . . . 17

B.4 Upgradeability (if implemented) [INFORMATIONAL] . . . . . . . . . . 18

B.5 Backdoor &Malicious CodeCheck [INFORMATIONAL] . . . . . . . . 18

B.6 Security of User Funds [INFORMATIONAL] . . . . . . . . . . . . . . . 18

B.7 Deployment &KeyManagement [INFORMATIONAL] . . . . . . . . . . 19

B.8 Client & EcosystemSafety [INFORMATIONAL] . . . . . . . . . . . . . 19

4 Conclusion 20

3



1 Introduction

CoinFlipVRF engaged BlockHat to conduct a security assessment on the CoinFlipVRF be-

ginning on August 7th, 2025 and ending August 11th, 2025. In this report, we detail our me-

thodical approach to evaluate potential security issues associated with the implementa-

tion of smart contracts, by exposing possible semantic discrepancies between the smart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About CoinFlipVRF

–

Issuer CoinFlipVRF

Website --

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

BlockHat used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

--


1.2.1 RiskMethodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5



2 FindingsOverview

2.1 Summary

The following is a synopsis of our conclusions fromour analysis of the CoinFlipVRF imple-

mentation. During the first part of our audit, we examine the smart contract source code

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts arewell-designed and constructed, but their implemen-

tation might be improved by addressing the discovered flaws, which include , 3 medium-

severity, 4 low-severity, 11 informational-severity vulnerabilities.

Vulnerabilities Severity Status

Owner CanDrain Pool Funds MEDIUM Fixed

UnboundedArrayGrowthWithoutCleanupMechanism MEDIUM Acknowledged

Griefing Attack via Incorrect Bet Limit Calculation MEDIUM Fixed

Minor Rounding Errors in Payout Calculations LOW Fixed

Type Inconsistency in Function Parameters LOW Fixed

HardcodedGas LimitMayBecome Insufficient LOW Acknowledged

Receive Function Lacks Tracking Despite Being Pri-

mary FundingMethod

LOW Acknowledged

DocumentationMismatch - FeePercentage INFORMATIONAL Fixed

MissingAddress Validation in Constructor INFORMATIONAL Fixed

Missing Events for Critical Parameter Changes INFORMATIONAL Fixed

Ownership Verification INFORMATIONAL Pass

HouseWallet Control INFORMATIONAL Pass

FeeEnforcement INFORMATIONAL Fail

Upgradeability (if implemented) INFORMATIONAL Pass

6



Backdoor&Malicious CodeCheck INFORMATIONAL Pass

Security of User Funds INFORMATIONAL Pass

Deployment &KeyManagement INFORMATIONAL Pass

Client & EcosystemSafety INFORMATIONAL Pass

7



3 FindingDetails

A CoinFlipVRF.sol

A.1 Owner CanDrain Pool Funds [MEDIUM]

Description:

The withdrawETH and withdrawUSDC functions allow the contract owner to withdraw any

amount from the contract, including users’ active betting pools. This creates a significant

centralization risk where the owner could accidentally or maliciously drain funds needed

for user payouts, potentially causing protocol insolvency. There is no distinction between

fee funds and pool funds in thesewithdrawal functions.

Listing 1: CoinFlipVRF_V2.sol

278 function withdrawETH(uint256 _amount) external onlyOwner {

279 require(address(this).balance >= _amount, "Insufficient ETH");

280 (bool success, ) = msg.sender.call{value: _amount}("");

281 require(success, "Withdraw failed");

282 }

Risk Level:

Likelihood – 3

Impact - 4

Recommendation:

Implement separate accounting for pool funds and fee funds. The withdrawal functions

should only allow withdrawing fee balances, not the entire contract balance. Consider:

require(_amount <= coinFeeBalance, ”Exceeds fee balance”);

8



Status - Fixed

A.2 Unbounded Array Growth Without Cleanup

Mechanism [MEDIUM]

Description:

The contract stores all request IDs in an unbounded array that growswith each bet placed

andhasnodeletionmechanism. While the contract never iterates through this array inter-

nally (avoiding DoS), the storage bloat causes: (1) Gradually increasing gas costs for push

operations, (2) Permanent storage consumption, (3) Inability for external contracts to ef-

ficiently retrieve historical data. The auto-generated getter function requestIds(index) re-

mainsO(1) constant time, but there’snoway to retrieve the full arrayor cleanupoldentries.

Listing 2: CoinFlipVRF_V2.sol

124 requestIds.push(requestId); // Unbounded growth, never cleaned

125 // Note: No iteration in contract, but storage grows forever

Risk Level:

Likelihood – 3

Impact - 2

Recommendation:

Since the array isn’t used internally, consider removing it entirely and just keeping lastRe-

questId. If historical tracking is needed, emit events instead or implement a circular buffer

withmaximumsize. Alternatively, add a cleanup function to delete old fulfilled request IDs

after a certain period.

9



Status -Acknowledged

A.3 Griefing Attack via Incorrect Bet Limit

Calculation [MEDIUM]

Description:

The contract calculates the maximum bet limit based on the pool balance that already in-

cludes the user’s current bet amount. This allows users to place larger bets than intended

by the protocol design, potentially affecting the protocol’s economic model and risk man-

agement. A malicious user could exploit this to place bets that exceed the intended per-

centage of the actual pool.

Listing 3: CoinFlipVRF_V2.sol

133 uint256 coinPoolBalance = address(this).balance; // Already includes msg

↪→ .value

134 require(

135 msg.value <= (coinPoolBalance * maxBetPercent) / FEE_DENOMINATOR,

136 "Bet exceeds max % of pool"

137 );

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Calculate thepoolbalancebefore includingtheuser’sbetbysubtractingmsg.valuefromthe

current balance: uint256 coinPoolBalance = address(this).balance - msg.value;. This en-

sures the percentage calculation is based on the actual pool size before the newbet.

10



Status - Fixed

A.4 Minor Rounding Errors in Payout Calculations [LOW]

Description:

The contract performs multiple division operations when calculating payouts and fees,

which can lead to minor rounding errors due to Solidity’s integer division. Small amounts

of wei or USDC units may be lost in these calculations, though the impact is minimal and

affects only dust amounts.

Listing 4: CoinFlipVRF_V2.sol

196 payout = (bet.amount * multiplier) / FEE_DENOMINATOR;

197 fee = (payout * feePercent) / FEE_DENOMINATOR;

198 winnings = payout - fee;

Risk Level:

Likelihood – 2

Impact - 1

Recommendation:

Consider reordering operations to minimize rounding errors, such as calculating fee di-

rectly frombet amount rather than frompayout. Alternatively, implement a dust collection

mechanism for accumulated rounding differences.

Status - Fixed

A.5 Type Inconsistency in Function Parameters [LOW]

Description:

The setMinBetAmount function uses uint56 for ETH amounts while uint256 is used every-

whereelse in thecontract. This inconsistencycould leadtoconfusionandpotential issues if

valuesexceedinguint56 rangeareattempted, thoughpractically this isunlikelygivenETH’s

total supply.

11



Listing 5: CoinFlipVRF_V2.sol

260 function setMinBetAmount(

261 uint256 _minUsdc,

262 uint56 _minEth

263 ) external onlyOwner {

264 minUsdcBet = _minUsdc;

265 minEthBet = _minEth;

266 }

Risk Level:

Likelihood – 2

Impact - 1

Recommendation:

Useconsistent uint256 type for all amount parameters throughout the contract tomaintain

code consistency and prevent potential type conversion issues.

Status - Fixed

A.6 HardcodedGas LimitMayBecome Insufficient [LOW]

Description:

Thecallbackgas limit ishardcodedto100,000gas,whichmaybecomeinsufficient if thecon-

tract logic is extended or if network conditions change. This could potentially cause VRF

callbacks to fail if they requiremore gas than allocated.

Listing 6: CoinFlipVRF_V2.sol

50 uint32 public callbackGasLimit = 100000;

12



Risk Level:

Likelihood – 2

Impact - 2

Recommendation:

Make the initial gas limit configurable via constructor parameter, or implement monitor-

ing to ensure the gas limit remains sufficient for callback execution under various network

conditions.

Status -Acknowledged

A.7 Receive Function Lacks Tracking Despite Being Primary

FundingMethod [LOW]

Description:

The receive function is the only way for the owner to add liquidity to the ETH betting pool,

as there are no dedicated deposit functions. However, it lacks any tracking, event emis-

sion, or sender verification. This creates issues: (1) No way to distinguish between owner

funding and accidental transfers, (2) No audit trail for pool funding, (3) Anyone can inflate

pool calculations by sending ETH. Notably, the contract defines CoinPoolCharged and To-

kenPoolCharged events that are never used.

Listing 7: CoinFlipVRF_V2.sol

320 receive() external payable {}

321 // Note: Events defined but never emitted:

322 // event CoinPoolCharged(address indexed user, uint256 amount, uint256

↪→ timestamp);

Risk Level:

Likelihood – 3

Impact - 2

13



Recommendation:

Since the receive function is needed for pool funding, enhance it with proper tracking: re-

ceive()externalpayable emitCoinPoolCharged(msg.sender,msg.value, block.timestamp);

. Alternatively, create a dedicated fundPool() functionwith access control if only the owner

should add liquidity.

Status -Acknowledged

A.8 Documentation Mismatch - Fee

Percentage [INFORMATIONAL]

Description:

The inline comment incorrectly states the fee percentage as 2

Listing 8: CoinFlipVRF_V2.sol

12 uint256 public feePercent = 350; // 2%

Risk Level:

Likelihood – 1

Impact - 1

Recommendation:

Update the comment to accurately reflect the implemented fee percentage:

14



Status - Fixed

A.9 Missing Address Validation in

Constructor [INFORMATIONAL]

Description:

The constructor does not validate that the USDC token address and house wallet address

are non-zero addresses. While this would only affect deployment and not runtime opera-

tions, deployingwith invalid addresseswould render the contract unusable.

Listing 9: CoinFlipVRF_V2.sol

92 keyHash = _keyHash;

93 subscriptionId = _subscriptionId;

94 usdcToken = IERC20(_usdcToken); // No zero check

95 houseWallet = _houseWallet; // No zero check

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

Addzeroaddressvalidation forcriticaladdresses in theconstructor topreventdeployment

with invalid configuration.

15



Status - Fixed

A.10 Missing Events for Critical Parameter

Changes [INFORMATIONAL]

Description:

Several functions that modify critical contract parameters do not emit events, making it

difficult to track configuration changes on-chain. Functions like setKeyHash, setSubId,

setGasLimit, setMinBetAmount, and setMaxBetPercent modify important contract

behavior but provide no event trail formonitoring or audit purposes.

Listing 10: CoinFlipVRF_V2.sol

238 function setKeyHash(bytes32 _newKeyHash) external onlyOwner {

239 keyHash = _newKeyHash;

240 // No event emitted

241 }

243 function setSubId(uint256 _newSubscriptionId) external onlyOwner {

244 subscriptionId = _newSubscriptionId;

245 // No event emitted

246 }

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

Add event emissions for all parameter change functions to enable proper monitoring and

transparency. Example: event KeyHashUpdated(bytes32 oldKeyHash, bytes32

newKeyHash);

16



Status - Fixed

B CoinFlipVRFChecklist

B.1 Ownership Verification [INFORMATIONAL]

Description:

Confirmthat thecontract implementsasecureownershippattern(e.g.,OpenZeppelinOwn-

ableor equivalent). Ensure theowner is initialized correctly andonlywe (via ourwallet ad-

dress) can: - Change key parameters (house wallet, fees, limits). - Perform upgrades (if

applicable). - Withdraw funds (if such a function exists). Verify no other hidden ownership

or admin roles exist.

Status - Pass

B.2 HouseWallet Control [INFORMATIONAL]

Description:

Ensure the house wallet is: - Configurable only by the owner. - Never hardcoded to a dev

address. -Not exposed toanyprivate keyheldby thedeveloper. Confirm thereareno func-

tions that allowunauthorizedwallet changes or fund transfers.

Status - Pass

B.3 Fee Enforcement [INFORMATIONAL]

Description:

Verify that: -A3.5% feeonwinnings isproperly deductedandsent to thehousewallet. - The

payout multiplier is set to 1.98× and cannot be altered except by owner (if configurable). -

There are no alternate payout paths bypassing fees.

17



Status - Pass

Status - Fail

B.4 Upgradeability (if implemented) [INFORMATIONAL]

Description:

If the contract uses an upgradeable proxy: - Confirm that upgrade rights are securely con-

trolledbyourownerwallet. -Verify nohiddenupgrademechanismsexist for thedeveloper

or third parties. If non-upgradeable, confirm there’s no self-destruct or re-deploy risk.

Status - Pass

B.5 Backdoor &Malicious CodeCheck [INFORMATIONAL]

Description:

Search for and confirm the absence of: - Unauthorized withdrawal functions (e.g.,

selfdestruct, unrestricted transferAllFunds). - Hardcoded developer addresses. -

Emergency kill switches not under our control. - External calls that could allow fund

draining. -Manipulable randomnumber generation (ensure fairness in coinflip).

Status - Pass

B.6 Security of User Funds [INFORMATIONAL]

Description:

Confirmthatuserdepositsandpayoutsare fullyhandledon-chain. Ensure therearenoex-

ternaldependencies (e.g., oracles,APIs) thatcouldcompromise fairnessorcustody. Check

for reentrancy vulnerabilities, integer overflows, and other common exploits. Check issue

A.1

18



Status - Pass

B.7 Deployment &KeyManagement [INFORMATIONAL]

Description:

Verify thatwe can safely deploy the contract ourselves. Confirmno deployment scripts in-

clude backdoors or allow the dev to retain ownership. Ensurewe can set the housewallet

using only the public address we control. Confirm that private keys are not shared or ex-

posed at any stage.

Status - Pass

B.8 Client & EcosystemSafety [INFORMATIONAL]

Description:

Ensure the contract cannot lock or freeze user funds unfairly. Confirm payouts are exe-

cuted solely by contract logic and cannot be intercepted or altered. Validate that gameout-

comes (coinflips) are unbiased and notmanipulable by any party, including us.

Status - Pass

19



4 Conclusion

In this audit, we examined the design and implementation of CoinFlipVRF contract and dis-

covered several issues of varying severity. CoinFlipVRF team addressed issues raised in

the initial report and implemented the necessary fixes, while classifying the rest as a risk

with low-probability of occurrence. Blockhat auditors advised CoinFlipVRF Team tomain-

tain a high level of vigilance and to keep those findings in mind in order to avoid any future

complications.

20



For a Smart Contract Audit, contact us at contact@blockhat.io

21

mailto:contact@blockhat.io

	Introduction
	About CoinFlipVRF
	Approach & Methodology
	Risk Methodology


	Findings Overview
	Summary
	Key Findings

	Finding Details
	CoinFlipVRF.sol
	Owner Can Drain Pool Funds [MEDIUM]
	Unbounded Array Growth Without Cleanup Mechanism [MEDIUM]
	Griefing Attack via Incorrect Bet Limit Calculation [MEDIUM]
	Minor Rounding Errors in Payout Calculations [LOW]
	Type Inconsistency in Function Parameters [LOW]
	Hardcoded Gas Limit May Become Insufficient [LOW]
	Receive Function Lacks Tracking Despite Being Primary Funding Method [LOW]
	Documentation Mismatch - Fee Percentage [INFORMATIONAL]
	Missing Address Validation in Constructor [INFORMATIONAL]
	Missing Events for Critical Parameter Changes [INFORMATIONAL]

	CoinFlipVRF Checklist
	Ownership Verification [INFORMATIONAL]
	House Wallet Control [INFORMATIONAL]
	Fee Enforcement [INFORMATIONAL]
	Upgradeability (if implemented) [INFORMATIONAL]
	Backdoor & Malicious Code Check [INFORMATIONAL]
	Security of User Funds [INFORMATIONAL]
	Deployment & Key Management [INFORMATIONAL]
	Client & Ecosystem Safety [INFORMATIONAL]


	Conclusion

