» BLOCKHAT

SECURITY

CoinFlipVRF

Smart Contract Security Audit

Prepared by BlockHat
August 71", 2025 - August 11*", 2025
BlockHat.io
contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client CoinFlipVRF
Version 1.0
Classification Private
Scope

The CoinFlipVRF smart contracts (Audit and Re-audit smart contracts)

Link

Address

https://sepolia.basescan.org/address/0x78F593
814f41e1a8c9E0084C2e8c30Db84fAcC26code

0x78F593814f41e1a8c9E0084C2e8c30Db84FACC26

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

https://blockhat.io

Contents

1 Introduction 4
11 AboutCoinFlipVRF 4
1.2 Approach &Methodology 4

121 RiskMethodology 5

2 Findings Overview
21 SUMMArY . . . e
22 KeyFindings e

3 Finding Details 8
A CoinFlipVRF.sol 8

Al Owner Can Drain Pool Funds [MEDIUM] 8
A.2 Unbounded Array Growth Without Cleanup Mechanism [MEDIUM] 9
A.3 Griefing Attack via Incorrect Bet Limit Calculation [MEDIUM] 10
A4 Minor Rounding Errors in Payout Calculations- [l
A5 Typelnconsistencyin Function Parameters- [l
A6 Hardcoded Gas Limit May Become Insufficient- 12
A7 Receive Function Lacks Tracking Despite Being Primary Funding
Method JBOW], 13
A.8 Documentation Mismatch - Fee Percentage [INFORMATIONAL] ... 14
A9 Missing Address Validationin Constructor [INFORMATIONAL] ... 15
A10 Missing Events for Critical Parameter Changes [INFORMATIONAL] . 16
B CoinFlipVRFChecklist 17
B.1 Ownership Verification [INFORMATIONAL] 17
B.2 House Wallet Control [INFORMATIONAL] 17
B.3 Fee Enforcement [INFORMATIONAL] 17
B.4 Upgradeability (ifimplemented) [INFORMATIONAL] 18
B.5 Backdoor & Malicious Code Check [INFORMATIONAL] 18
B.6 Securityof User Funds [INFORMATIONAL] 18
B.7 Deployment & Key Management [INFORMATIONAL] 19
B.8 Client & Ecosystem Safety [INFORMATIONAL] 19
4 Conclusion 20

1 Introduction

CoinFlipVRF engaged BlockHat to conduct a security assessment on the CoinFlipVRF be-
ginning on August 7", 2025 and ending August 11'", 2025. In this report, we detail our me-
thodical approach to evaluate potential security issues associated with the implementa-
tion of smart contracts, by exposing possible semantic discrepancies between the smart
contract code and design document, and by recommending additionalideas to optimize the
existing code. Our findings indicate that the current version of smart contracts can still be
enhanced further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About CoinFlipVRF

Issuer CoinFlipVRF

Website --

Type Solidity Smart Contract
Audit Method Whitebox

1.2 Approach & Methodology

BlockHat used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

--

1.21 Risk Methodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

‘6 High
g Medium
— Low Medium
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the CoinFlipVRF imple-

mentation. During the first part of our audit, we examine the smart contract source code

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but theirimplemen-

tation might be improved by addressing the discovered flaws, which include , © medium-
severity, 4 low-severity, ' informational-severity vulnerabilities.
Vulnerabilities Severity Status
Owner Can Drain Pool Funds MEDIUM Fixed
Unbounded Array Growth Without Cleanup Mechanism MEDIUM Acknowledged
Griefing Attack via Incorrect Bet Limit Calculation MEDIUM Fixed
Minor Rounding Errors in Payout Calculations Fixed
Type Inconsistency in Function Parameters Fixed
Hardcoded Gas Limit May Become Insufficient Acknowledged
Receive Function Lacks Tracking Despite Being Pri- Acknowledged
mary Funding Method
Documentation Mismatch - Fee Percentage INFORMATIONAL | Fixed
Missing Address Validation in Constructor INFORMATIONAL | Fixed
Missing Events for Critical Parameter Changes INFORMATIONAL | Fixed
Ownership Verification INFORMATIONAL | Pass
House Wallet Control INFORMATIONAL | Pass
Fee Enforcement INFORMATIONAL | Fail
Upgradeability (ifimplemented) INFORMATIONAL | Pass

Backdoor & Malicious Code Check

INFORMATIONAL

Security of User Funds INFORMATIONAL
Deployment & Key Management INFORMATIONAL
Client & Ecosystem Safety INFORMATIONAL

3 Finding Details

A CoinFlipVRF.sol

A.1 Owner Can Drain Pool Funds [MEDIUM]

Description:

The withdrawETH and withdrawUSDC functions allow the contract owner to withdraw any
amount from the contract, including users’ active betting pools. This creates a significant
centralization risk where the owner could accidentally or maliciously drain funds needed
for user payouts, potentially causing protocol insolvency. There is no distinction between
fee funds and pool funds in these withdrawal functions.

Listing 1: CoinFlipVRF_Vv2.sol

zs function withdrawETH(uint256 _amount) external onlyOwner {

279 require(address(this) .balance >= _amount, "Insufficient ETH");
280 (bool success,) = msg.sender.call{value: _amount}("");

281 require(success, "Withdraw failed");

282 }

Risk Level:

Likelihood - 3

Impact - 4

Recommendation:

Implement separate accounting for pool funds and fee funds. The withdrawal functions
should only allow withdrawing fee balances, not the entire contract balance. Consider:
require(_amount <= coinFeeBalance, "Exceeds fee balance”);

Status - Fixed

A.2 Unbounded Array Growth Without Cleanup
Mechanism [MEDIUM]

Description:

The contract stores all request IDs in an unbounded array that grows with each bet placed
and has no deletion mechanism. While the contract never iterates through this array inter-
nally (avoiding DoS), the storage bloat causes: (1) Gradually increasing gas costs for push
operations, (2) Permanent storage consumption, (3) Inability for external contracts to ef-
ficiently retrieve historical data. The auto-generated getter function requestlds(index) re-
mains O(1) constant time, but there’s no way to retrieve the fullarray or clean up old entries.

Listing 2: CoinFlipVRF_V2.sol

2 requestlds.push(requestId); // Unbounded growth, never cleaned

ws // Note: No iteration in contract, but storage grows forever

Risk Level;

Likelihood -3
Impact - 2

Recommendation:

Since the array isn't used internally, consider removing it entirely and just keeping lastRe-
questld. If historical tracking is needed, emit events instead or implement a circular buffer
with maximum size. Alternatively, add a cleanup function to delete old fulfilled request IDs
after a certain period.

Status - Acknowledged

A.3 Griefing Attack via Incorrect Bet Limit
Calculation [MEDIUM]

Description:

The contract calculates the maximum bet limit based on the pool balance that already in-
cludes the user’s current bet amount. This allows users to place larger bets than intended
by the protocol design, potentially affecting the protocol’'s economic model and risk man-
agement. A malicious user could exploit this to place bets that exceed the intended per-
centage of the actual pool.

Listing 3: CoinFlipVRF_V2.sol

w3 uint256 coinPoolBalance = address(this).balance; // Already includes msg
— .value

134 require (

135 msg.value <= (coinPoolBalance * maxBetPercent) / FEE_DENOMINATOR,
136 "Bet exceeds max % of pool"

B)

Risk Level:

Likelihood -3

Impact -3

Recommendation:

Calculatethe poolbalance beforeincludingthe user’s bet by subtracting msg.value fromthe
current balance: uint256 coinPoolBalance = address(this).balance - msg.value;. This en-

sures the percentage calculation is based on the actual pool size before the new bet.

10

Status - Fixed

A.4 Minor Rounding Errors in Payout Calculations-

Description:

The contract performs multiple division operations when calculating payouts and fees,
which can lead to minor rounding errors due to Solidity’s integer division. Small amounts
of wei or USDC units may be lost in these calculations, though the impact is minimal and
affects only dust amounts.

Listing 4: CoinFlipVRF_V2.sol

we payout = (bet.amount * multiplier) / FEE_DENOMINATOR;
w1 fee = (payout * feePercent) / FEE DENOMINATOR;

vs winnings = payout - fee;

Risk Level;

Likelihood - 2
Impact -1

Recommendation:

Consider reordering operations to minimize rounding errors, such as calculating fee di-
rectly from bet amount rather than from payout. Alternatively, implement a dust collection
mechanism for accumulated rounding differences.

Status - Fixed

A.5 Typelnconsistencyin Function Parameters-

Description:

The setMinBetAmount function uses uint56 for ETH amounts while uint256 is used every-
whereelseinthe contract. Thisinconsistency could lead to confusion and potentialissues if
values exceedinguint5é range are attempted, though practically thisis unlikely given ETH’s
total supply.

1

Risk Level:

Likelihood -2
Impact -1

Recommendation:

Use consistent uint256 type for allamount parameters throughout the contract to maintain
code consistency and prevent potential type conversionissues.

Status - Fixed

A.6 Hardcoded Gas Limit May Become Insufficient-

Description:

The callbackgaslimitishardcodedto 100,000 gas, which maybecome insufficientifthe con-
tract logic is extended or if network conditions change. This could potentially cause VRF

callbacks to failif they require more gas than allocated.

1

N

Risk Level:

Likelihood -2
Impact - 2

Recommendation:

Make the initial gas limit configurable via constructor parameter, or implement monitor-
ing to ensure the gas limit remains sufficient for callback execution under various network
conditions.

Status - Acknowledged

A.7 Receive Function Lacks Tracking Despite Being Primary

Funding Method [[EOW]

Description:

The receive function is the only way for the owner to add liquidity to the ETH betting pool,
as there are no dedicated deposit functions. However, it lacks any tracking, event emis-
sion, or sender verification. This creates issues: (1) No way to distinguish between owner
funding and accidental transfers, (2) No audit trail for pool funding, (3) Anyone can inflate
pool calculations by sending ETH. Notably, the contract defines CoinPoolCharged and To-
kenPoolCharged events that are never used.

Listing 7: CoinFlipVRF_V2.s0l

20 receive() external payable {}
sn // Note: Events defined but never emitted:
a2 // event CoinPoolCharged(address indexed user, uint256 amount, uint256

— timestamp) ;

Risk Level:

Likelihood -3
Impact - 2

13

Recommendation:

Since the receive function is needed for pool funding, enhance it with proper tracking: re-
ceive() external payable emit CoinPoolCharged(msg.sender, msg.value, block.timestamp);
. Alternatively, create a dedicated fundPool() function with access controlif only the owner
should add liquidity.

Status - Acknowledged

A.8 Documentation Mismatch - Fee
Percentage [INFORMATIONAL]

Description:
The inline comment incorrectly states the fee percentage as 2

Listing 8: CoinFlipVRF_V2.sol

2 uint256 public feePercent = 350; // 2/

Risk Level:

Likelihood -1
Impact -1

Recommendation:

Update the comment to accurately reflect the implemented fee percentage:

14

Status - Fixed

A.9 Missing Address Validation in
Constructor [INFORMATIONAL]

Description:

The constructor does not validate that the USDC token address and house wallet address
are non-zero addresses. While this would only affect deployment and not runtime opera-
tions, deploying with invalid addresses would render the contract unusable.

Listing 9: CoinFlipVRF_V2.sol

92 keyHash = _keyHash;

93 subscriptionld = _subscriptionlId;

% usdcToken = IERC20(_usdcToken); // No zero check
5 houseWallet = _houseWallet; // No zero check

o

Risk Level:

Likelihood -1
Impact - 2

Recommendation:

Add zero address validation for critical addressesinthe constructor to prevent deployment

with invalid configuration.

15

Status - Fixed

A10 Missing Events for Critical Parameter
Changes [INFORMATIONAL]
Description:

Several functions that modify critical contract parameters do not emit events, making it
difficult to track configuration changes on-chain. Functions like setKeyHash, setSubld,
setGasLimit, setMinBetAmount, and setMaxBetPercent modify important contract

behavior but provide no event trail for monitoring or audit purposes.

Risk Level:

Likelihood -1
Impact - 2

Recommendation:

Add event emissions for all parameter change functions to enable proper monitoring and
transparency. Example: event KeyHashUpdated(bytes32 oldKeyHash, bytes32
newKeyHash);

Status - Fixed

B CoinFlipVRF Checklist

B.1 Ownership Verification [INFORMATIONAL]

Description:

Confirmthatthe contractimplementsasecure ownership pattern (e.g., OpenZeppelin Own-
able or equivalent). Ensure the owner s initialized correctly and only we (via our wallet ad-
dress) can: - Change key parameters (house wallet, fees, limits). - Perform upgrades (if
applicable). - Withdraw funds (if such a function exists). Verify no other hidden ownership
or adminroles exist.

Status -

B.2 House Wallet Control [INFORMATIONAL]

Description:

Ensure the house wallet is: - Configurable only by the owner. - Never hardcoded to a dev
address. - Not exposed to any private key held by the developer. Confirm there are no func-
tions that allow unauthorized wallet changes or fund transfers.

Status -

B.3 FeeEnforcement [INFORMATIONAL]

Description:

Verify that: - A3.5% fee onwinningsis properly deducted and sent to the house wallet. - The
payout multiplier is set to 1.98x and cannot be altered except by owner (if configurable). -
There are no alternate payout paths bypassing fees.

17

Status -

Status - Fail

B.4 Upgradeability (ifimplemented) [INFORMATIONAL]

Description:

If the contract uses an upgradeable proxy: - Confirm that upgrade rights are securely con-
trolled by our owner wallet. - Verify no hidden upgrade mechanisms exist for the developer
or third parties. If non-upgradeable, confirm there’s no self-destruct or re-deploy risk.

Status -

B.5 Backdoor & Malicious Code Check [INFORMATIONAL]

Description:

Search for and confirm the absence of: - Unauthorized withdrawal functions (e.g.,
selfdestruct, unrestricted transferAl1Funds). - Hardcoded developer addresses. -
Emergency Kill switches not under our control. - External calls that could allow fund
draining. - Manipulable random number generation (ensure fairness in coinflip).

Status -

B.6 Security of User Funds [INFORMATIONAL]

Description:

Confirm that user deposits and payouts are fully handled on-chain. Ensure there are no ex-
ternaldependencies (e.g., oracles, APIs) that could compromise fairness or custody. Check
for reentrancy vulnerabilities, integer overflows, and other common exploits. Checkissue
Al

18

Status -

B.7 Deployment & Key Management [INFORMATIONAL]

Description:

Verify that we can safely deploy the contract ourselves. Confirm no deployment scriptsin-
clude backdoors or allow the dev to retain ownership. Ensure we can set the house wallet
using only the public address we control. Confirm that private keys are not shared or ex-
posed at any stage.

Status -

B.8 Client & Ecosystem Safety [INFORMATIONAL]

Description:

Ensure the contract cannot lock or freeze user funds unfairly. Confirm payouts are exe-
cuted solely by contract logic and cannot be intercepted or altered. Validate that game out-
comes (coinflips) are unbiased and not manipulable by any party, including us.

Status -

19

4 Conclusion

In this audit, we examined the design and implementation of CoinFlipVRF contract and dis-
covered several issues of varying severity. CoinFlipVRF team addressed issues raised in
the initial report and implemented the necessary fixes, while classifying the rest as a risk
with low-probability of occurrence. Blockhat auditors advised CoinFlipVRF Team to main-
tain a high level of vigilance and to keep those findings in mind in order to avoid any future

complications.

20

» BLOCKHAT

SECURITY

For a Smart Contract Audit, contact us at contact@blockhat.io

21

mailto:contact@blockhat.io

	Introduction
	About CoinFlipVRF
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	CoinFlipVRF.sol
	Owner Can Drain Pool Funds [MEDIUM]
	Unbounded Array Growth Without Cleanup Mechanism [MEDIUM]
	Griefing Attack via Incorrect Bet Limit Calculation [MEDIUM]
	Minor Rounding Errors in Payout Calculations [LOW]
	Type Inconsistency in Function Parameters [LOW]
	Hardcoded Gas Limit May Become Insufficient [LOW]
	Receive Function Lacks Tracking Despite Being Primary Funding Method [LOW]
	Documentation Mismatch - Fee Percentage [INFORMATIONAL]
	Missing Address Validation in Constructor [INFORMATIONAL]
	Missing Events for Critical Parameter Changes [INFORMATIONAL]

	CoinFlipVRF Checklist
	Ownership Verification [INFORMATIONAL]
	House Wallet Control [INFORMATIONAL]
	Fee Enforcement [INFORMATIONAL]
	Upgradeability (if implemented) [INFORMATIONAL]
	Backdoor & Malicious Code Check [INFORMATIONAL]
	Security of User Funds [INFORMATIONAL]
	Deployment & Key Management [INFORMATIONAL]
	Client & Ecosystem Safety [INFORMATIONAL]

	Conclusion

