» BLOCKHAT

SECURITY

MindX

Smart Contract Security Audit

Prepared by BlockHat
February 26", 2024 - February 29", 2024
BlockHat.io
contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client MindX

Version 0.1

Classification Private
Scope

Repository Commit Hash
Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

mailto:contact@blockhat.io

Contents

1 Introduction 4
11 AboutMindX 4
1.2 Approach &Methodology 4
121 RiskMethodology 5
2 Findings Overview
21 SUMMArY . . . e
22 KeyFindings e
3 Finding Details 7
A Mindx.sol 7
Al Unrestricted Access Control_ 7
A2 TradingEnabled by Default [[SRINOIEN - - - - - - - - - - - - - .- .. 8
A3 Lackof FeeLimits [HIGH]| 9
A4 Use of Outdated ERC20 and Ownable Contracts [MEDIUM] 10
A5 Redundant Address Assignments [MEDIUM] 10
A.6 Misleading Function Names and Redundancies [MEDIUM] n
A7 Inefficient Use of Arithmetic Operations- 13
A.8 Unclear Purpose of Tier Timestamps [INFORMATIONAL] 13
4 Static Analysis (Slither) 15
5 Conclusion 21

1 Introduction

MindX engaged BlockHat to conduct a security assessment on the MindX beginning on
February 26,2024 and ending February 29'", 2024. In this report, we detail our methodical
approach to evaluate potential security issues associated with the implementation of
smart contracts, by exposing possible semantic discrepancies between the smart
contract code and design document, and by recommending additionalideas to optimize the
existing code. Our findings indicate that the current version of smart contracts can still be
enhanced further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About MindX

Issuer MindX

Website

Type Solidity Smart Contract
Audit Method Whitebox

1.2 Approach & Methodology

BlockHat used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

1.21 Risk Methodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

‘6 High
g Medium
— Low Medium
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the MindX implementa-
tion. During the first part of our audit, we examine the smart contract source code and run
the codebase via a static code analyzer. The objective here is to find known coding prob-
lems statically and then manually check (reject or confirm) issues highlighted by the tool.
Additionally, we check business logics, system processes, and DeFi-related components
manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include 2
critical-severity, high-severity, medium-severity, 1 low-severity,
informational-severity vulnerabilities.

Vulnerabilities Severity Status
Unrestricted Access Control Not Fixed
Trading Enabled by Default Not Fixed
Lack of Fee Limits HIGH Not Fixed
Use of Outdated ERC20 and Ownable Contracts MEDIUM Not Fixed
Redundant Address Assignments MEDIUM Not Fixed
Misleading Function Names and Redundancies MEDIUM Not Fixed
Inefficient Use of Arithmetic Operations _@
Unclear Purpose of Tier Timestamps INFORMATIONAL | Not Fixed

3 Finding Details

A Mindx.sol

A.1 Unrestricted Access Control_

Description:

Several functions that should be restricted to the owner are publicly accessible, posing a
significant security risk.

Code:

7

Risk Level:

Likelihood -5
Impact-5

Recommendation:

Restrictaccesstosensitive functionsbyimplementingappropriate access control checks.

Status - Not Fixed

A.2 Trading Enabled by Default [SRINSEE]

Description:

Trading is enabled by default in the constructor, which can lead to security risks and unin-
tended trading before the contract setup is fully complete.

Code:

Listing 2: Mindx.sol

832 tradingEnabled = true;

Risk Level:

Likelihood -5
Impact-5

Recommendation:

Modify the contract to have trading disabled by default. Enable trading explicitly after all
initializations are completed securely.

Status - Not Fixed

A.3 Lackof Fee Limits [[HIGH]

Description:

There are no limits on the fees that can be set, potentially allowing for unreasonable or ex-
ploitative fee levels.

Code:

Risk Level:

Likelihood - 4
Impact -5

Recommendation:

Implement a maximum fee limit to protect users from excessive charges.

~O

Status - Not Fixed

A.4 Use of Outdated ERC20 and Ownable
Contracts [MEDIUM]

Description:

The contract uses outdated versions of the ERC20 and Ownable contracts, which may lack
recent security improvements and optimizations.

Code:

Listing 4: Mindx.sol

783 contract Mindx is ERC20, Ownable {

Risk Level:

Likelihood -3
Impact -3

Recommendation:

Upgradetothe latest versions of these contractstoincorporate the latest security fixes and
improvements.

Status - Not Fixed

A.5 Redundant Address Assignments [MEDIUM]

Description:

TheTechTeam, TreasuryRevenue,andTreasuryOwner are all settothe same address, caus-
ing unnecessary redundancy in address assignments and mapping settings.

10

Risk Level:

Likelihood - 3
Impact - 2

Recommendation:

Ensure that different roles are assigned to distinct addresses to reduce confusion and in-
crease contract clarity.

Status - Not Fixed

A.6 Misleading Function Names and
Redundancies_
Description:

The function enableTrading is misleadingly named as it can also disable trading. Addition-
ally, there are redundant functions for fee setting.

l

Risk Level:

Likelihood - 3
Impact -3

Recommendation:

Rename functions for clarity and remove redundant functions to simplify contract logic.

12

Status - Not Fixed

A.7 Inefficient Use of Arithmetic Operations-

Description:

The contract performs multiplication before division in share calculations, leading to po-
tential rounding errors and inefficiencies.

Code:

Listing 9: Mindx.sol

829 uint techTeam = (total_Supply / 100) * 5
Listing 10: Mindx.sol

887 Taxation = (amount / 100) * Taxation;

Risk Level:

Likelihood - 2
Impact - 2

Recommendation:

Follow best practices forarithmetic operationsto minimize rounding errors and gas costs.

Status - Not Fixed

A.8 Unclear Purpose of Tier Timestamps [INFORMATIONAL]

Description:

The utility of _tierTimestamp mapping is unclear, raising questions about its purpose and
implementation.

13

Risk Level:

Likelihood -1
Impact -1

Recommendation:

Clarify the purpose of tier timestamps and ensure they are implemented securely and ef-
fectively.

Status - Not Fixed

14

4 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing
methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
used to test mathematical relationships between Solidity instances statically and
variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs
throughout the entire codebase.

Results:

15

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

20

5 Conclusion

We examined the design and implementation of MindX in this audit and found several
issues of various severities. We advise MindX team to implement the recommendations
contained in all 8 of our findings to further enhance the code’s security. It is of utmost
priority to start by addressing the most severe exploit discovered by the auditors then
followed by the remaining exploits, and finally we will be conducting a re-audit following
the implementation of the remediation plan contained in this report.

We would much appreciate any constructive feedback or suggestions regarding our
methodology, audit findings, or potential scope gaps in this report.

21

» BLOCKHAT

SECURITY

For a Smart Contract Audit, contact us at contact@blockhat.io

22

mailto:contact@blockhat.io

	Introduction
	About MindX
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Mindx.sol
	Unrestricted Access Control [CRITICAL]
	Trading Enabled by Default [CRITICAL]
	Lack of Fee Limits [HIGH]
	Use of Outdated ERC20 and Ownable Contracts [MEDIUM]
	Redundant Address Assignments [MEDIUM]
	Misleading Function Names and Redundancies [MEDIUM]
	Inefficient Use of Arithmetic Operations [LOW]
	Unclear Purpose of Tier Timestamps [INFORMATIONAL]

	Static Analysis (Slither)
	Conclusion

