
MindX

Smart Contract Security Audit

Prepared byBlockHat

February 26th, 2024 - February 29th, 2024

BlockHat.io

contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client MindX

Version 0.1

Classification Private

Scope

Repository Commit Hash

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

2

mailto:contact@blockhat.io

Contents

1 Introduction 4

1.1 AboutMindX . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

A Mindx.sol . 7

A.1 UnrestrictedAccess Control [CRITICAL] 7

A.2 Trading Enabled byDefault [CRITICAL] 8

A.3 Lack of Fee Limits [HIGH] . 9

A.4 Use of Outdated ERC20 andOwnable Contracts [MEDIUM] 10

A.5 Redundant AddressAssignments [MEDIUM] 10

A.6 Misleading FunctionNames andRedundancies [MEDIUM] 11

A.7 Inefficient Use of Arithmetic Operations [LOW] 13

A.8 Unclear Purpose of Tier Timestamps [INFORMATIONAL] 13

4 Static Analysis (Slither) 15

5 Conclusion 21

3

1 Introduction

MindX engaged BlockHat to conduct a security assessment on the MindX beginning on

February 26th, 2024 andendingFebruary 29th, 2024. In this report,wedetail ourmethodical

approach to evaluate potential security issues associated with the implementation of

smart contracts, by exposing possible semantic discrepancies between the smart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 AboutMindX

Issuer MindX

Website

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

BlockHat used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview

2.1 Summary

The following is a synopsis of our conclusions fromour analysis of theMindX implementa-

tion. During the first part of our audit, we examine the smart contract source code and run

the codebase via a static code analyzer. The objective here is to find known coding prob-

lems statically and thenmanually check (reject or confirm) issues highlighted by the tool.

Additionally, we check business logics, system processes, and DeFi-related components

manually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include 2

critical-severity, 1 high-severity, 3 medium-severity, 1 low-severity, 1

informational-severity vulnerabilities.

Vulnerabilities Severity Status

UnrestrictedAccessControl CRITICAL Not Fixed

Trading Enabled byDefault CRITICAL Not Fixed

Lack of Fee Limits HIGH Not Fixed

Use of Outdated ERC20 andOwnable Contracts MEDIUM Not Fixed

Redundant AddressAssignments MEDIUM Not Fixed

Misleading FunctionNames andRedundancies MEDIUM Not Fixed

Inefficient Use of Arithmetic Operations LOW Not Fixed

Unclear Purpose of Tier Timestamps INFORMATIONAL Not Fixed

6

3 FindingDetails

A Mindx.sol

A.1 UnrestrictedAccessControl [CRITICAL]

Description:

Several functions that should be restricted to the owner are publicly accessible, posing a

significant security risk.

Code:

Listing 1: Mindx.sol

901 function adding_isExcludedMaxTransactionAmount(address _a) public {

902 _isExcludedMaxTransactionAmount[_a] = true;

903 emit adding_isExcluded(_a);

904 }

906 function removing_isExcludedMaxTransactionAmount(address _a) public

↪→ {

907 delete _isExcludedMaxTransactionAmount[_a];

908 emit removing_isExcluded(_a);

909 }

911 function adding_automatedMarketMakerPairs(address _a) public {

912 _automatedMarketMaker[_a] = true;

913 emit adding_automated(_a);

914 }

916 function removing_automatedMarketMakerPairs(address _a) public {

917 delete _automatedMarketMaker[_a];

918 emit removing_automated(_a);

919 }

7

Risk Level:

Likelihood – 5

Impact - 5

Recommendation:

Restrictaccesstosensitivefunctionsby implementingappropriateaccesscontrolchecks.

Status -Not Fixed

A.2 Trading Enabled byDefault [CRITICAL]

Description:

Trading is enabled by default in the constructor, which can lead to security risks and unin-

tended trading before the contract setup is fully complete.

Code:

Listing 2: Mindx.sol

832 tradingEnabled = true;

Risk Level:

Likelihood – 5

Impact - 5

Recommendation:

Modify the contract to have trading disabled by default. Enable trading explicitly after all

initializations are completed securely.

8

Status -Not Fixed

A.3 Lack of Fee Limits [HIGH]

Description:

There are no limits on the fees that can be set, potentially allowing for unreasonable or ex-

ploitative fee levels.

Code:

Listing 3: Mindx.sol

845 function taxChange(uint _b, uint _s) external onlyOwner {

846 liquidityFeeOnBuy = _b;

847 liquidityFeeOnSell = _s;

849 emit tax_change(_b, _s);

850 }

852 function divChange(uint _b, uint _s) external onlyOwner {

853 liquidityFeeOnBuy = _b;

854 liquidityFeeOnSell = _s;

856 emit tax_fee(_b, _s);

857 }

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

Implement amaximum fee limit to protect users fromexcessive charges.

9

Status -Not Fixed

A.4 Use of Outdated ERC20 and Ownable

Contracts [MEDIUM]

Description:

The contract uses outdated versions of the ERC20 and Ownable contracts, whichmay lack

recent security improvements and optimizations.

Code:

Listing 4: Mindx.sol

783 contract Mindx is ERC20, Ownable {

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Upgradeto the latestversionsof thesecontracts to incorporate the latestsecurity fixesand

improvements.

Status -Not Fixed

A.5 Redundant AddressAssignments [MEDIUM]

Description:

TheTechTeam,TreasuryRevenue,andTreasuryOwnerareallset to thesameaddress,caus-

ing unnecessary redundancy in address assignments andmapping settings.

10

Code:

Listing 5: Mindx.sol

796 address public TechTeam = 0x60FF0d52212B896438E2f6f35c5A75e0229539db

↪→ ;

797 address public TreasuryRevenue = 0

↪→ x60FF0d52212B896438E2f6f35c5A75e0229539db;

798 address public TreasuryOwner = 0

↪→ x60FF0d52212B896438E2f6f35c5A75e0229539db;

Listing 6: Mindx.sol

821 _automatedMarketMaker[msg.sender] = true;

822 _automatedMarketMaker[TechTeam] = true;

823 _automatedMarketMaker[TreasuryRevenue] = true;

824 _automatedMarketMaker[TreasuryOwner] = true;

Risk Level:

Likelihood – 3

Impact - 2

Recommendation:

Ensure that different roles are assigned to distinct addresses to reduce confusion and in-

crease contract clarity.

Status -Not Fixed

A.6 Misleading Function Names and

Redundancies [MEDIUM]

Description:

The function enableTrading is misleadingly named as it can also disable trading. Addition-

ally, there are redundant functions for fee setting.

11

Code:

Listing 7: Mindx.sol

839 function enableTrading(bool _status) external onlyOwner {

840 require(!tradingEnabled, "Trading already enabled.");

841 tradingEnabled = _status;

842 emit enable_trading(_status);

843 }

Listing 8: Mindx.sol

845 function taxChange(uint _b, uint _s) external onlyOwner {

846 liquidityFeeOnBuy = _b;

847 liquidityFeeOnSell = _s;

849 emit tax_change(_b, _s);

850 }

852 function divChange(uint _b, uint _s) external onlyOwner {

853 liquidityFeeOnBuy = _b;

854 liquidityFeeOnSell = _s;

856 emit tax_fee(_b, _s);

857 }

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Rename functions for clarity and remove redundant functions to simplify contract logic.

12

Status -Not Fixed

A.7 Inefficient Use of Arithmetic Operations [LOW]

Description:

The contract performs multiplication before division in share calculations, leading to po-

tential rounding errors and inefficiencies.

Code:

Listing 9: Mindx.sol

829 uint techTeam = (total_Supply / 100) * 5

Listing 10: Mindx.sol

887 Taxation = (amount / 100) * Taxation;

Risk Level:

Likelihood – 2

Impact - 2

Recommendation:

Followbestpracticesforarithmeticoperationstominimizeroundingerrorsandgascosts.

Status -Not Fixed

A.8 Unclear Purpose of Tier Timestamps [INFORMATIONAL]

Description:

The utility of _tierTimestamp mapping is unclear, raising questions about its purpose and

implementation.

13

Code:

Listing 11: Mindx.sol

895 _tierTimestamp[to] = block.timestamp;

896 _tierTimestamp[from] = block.timestamp;

Listing 12: Mindx.sol

921 function getTier(address account) public view returns (uint) {

922 return _tierTimestamp[account];

923 }

Risk Level:

Likelihood – 1

Impact - 1

Recommendation:

Clarify the purpose of tier timestamps and ensure they are implemented securely and ef-

fectively.

Status -Not Fixed

14

4 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing

methodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

used to test mathematical relationships between Solidity instances statically and

variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

INFO:Detectors:

Mindx.OwnerShare (token.sol#792) is never initialized. It is used in:

- Mindx._transfer(address,address,uint256) (token.sol#866-899)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #uninitialized-state-variables

INFO:Detectors:

Mindx.constructor() (token.sol#820-835) performs a multiplication on the

↪→ result of a division:

- techTeam = (total_Supply / 100) * 5 (token.sol#829)

Mindx._transfer(address,address,uint256) (token.sol#866-899) performs a

↪→ multiplication on the result of a division:

- Taxation = (amount / 100) * Taxation (token.sol#887)

Mindx._transfer(address,address,uint256) (token.sol#866-899) performs a

↪→ multiplication on the result of a division:

- _owner_share = (Taxation / 100) * OwnerShare (token.sol#890)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #divide-before-multiply

INFO:Detectors:

Contract locking ether found:

Contract Mindx (token.sol#783-924) has payable functions:

- Mindx.receive() (token.sol#837)

15

But does not have a function to withdraw the ether

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #contracts-that-lock-ether

INFO:Detectors:

Mindx.divAdress(address,address)._tr (token.sol#859) lacks a zero-check

↪→ on :

- TreasuryRevenue = _tr (token.sol#860)

Mindx.divAdress(address,address)._to (token.sol#859) lacks a zero-check

↪→ on :

- TreasuryOwner = _to (token.sol#861)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #missing-zero-address-validation

INFO:Detectors:

Address._revert(bytes,string) (token.sol#528-543) uses assembly

- INLINE ASM (token.sol#536-539)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #assembly-usage

INFO:Detectors:

Address._revert(bytes,string) (token.sol#528-543) is never used and

↪→ should be removed

Address.functionCall(address,bytes) (token.sol#387-398) is never used

↪→ and should be removed

Address.functionCall(address,bytes,string) (token.sol#400-406) is never

↪→ used and should be removed

Address.functionCallWithValue(address,bytes,uint256) (token.sol#408-420)

↪→ is never used and should be removed

Address.functionCallWithValue(address,bytes,uint256,string) (token.sol

↪→ #422-442) is never used and should be removed

Address.functionDelegateCall(address,bytes) (token.sol#471-481) is never

↪→ used and should be removed

Address.functionDelegateCall(address,bytes,string) (token.sol#483-496)

↪→ is never used and should be removed

Address.functionStaticCall(address,bytes) (token.sol#444-454) is never

↪→ used and should be removed

16

Address.functionStaticCall(address,bytes,string) (token.sol#456-469) is

↪→ never used and should be removed

Address.isContract(address) (token.sol#370-372) is never used and should

↪→ be removed

Address.sendValue(address,uint256) (token.sol#374-385) is never used and

↪→ should be removed

Address.verifyCallResult(bool,bytes,string) (token.sol#516-526) is never

↪→ used and should be removed

Address.verifyCallResultFromTarget(address,bool,bytes,string) (token.sol

↪→ #498-514) is never used and should be removed

Context._msgData() (token.sol#551-554) is never used and should be

↪→ removed

ERC20._burn(address,uint256) (token.sol#741-756) is never used and

↪→ should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #dead-code

INFO:Detectors:

Pragma version^0.8.0 (token.sol#2) allows old versions

solc-0.8.0 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #incorrect-versions-of-solidity

INFO:Detectors:

Low level call in Address.sendValue(address,uint256) (token.sol#374-385)

↪→ :

- (success) = recipient.call{value: amount}() (token.sol#383)

Low level call in Address.functionCallWithValue(address,bytes,uint256,

↪→ string) (token.sol#422-442):

- (success,returndata) = target.call{value: value}(data) (token.

↪→ sol#432-434)

Low level call in Address.functionStaticCall(address,bytes,string) (

↪→ token.sol#456-469):

- (success,returndata) = target.staticcall(data) (token.sol#461)

Low level call in Address.functionDelegateCall(address,bytes,string) (

↪→ token.sol#483-496):

17

- (success,returndata) = target.delegatecall(data) (token.sol

↪→ #488)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #low-level-calls

INFO:Detectors:

Function IUniswapV2Pair.DOMAIN_SEPARATOR() (token.sol#64) is not in

↪→ mixedCase

Function IUniswapV2Pair.PERMIT_TYPEHASH() (token.sol#66) is not in

↪→ mixedCase

Function IUniswapV2Pair.MINIMUM_LIQUIDITY() (token.sol#97) is not in

↪→ mixedCase

Function IUniswapV2Router01.WETH() (token.sol#137) is not in mixedCase

Event Mindx.adding_isExcluded(address) (token.sol#811) is not in

↪→ CapWords

Event Mindx.removing_isExcluded(address) (token.sol#812) is not in

↪→ CapWords

Event Mindx.adding_automated(address) (token.sol#813) is not in CapWords

Event Mindx.removing_automated(address) (token.sol#814) is not in

↪→ CapWords

Event Mindx.enable_trading(bool) (token.sol#815) is not in CapWords

Event Mindx.tax_change(uint256,uint256) (token.sol#816) is not in

↪→ CapWords

Event Mindx.tax_Treasury(address,address) (token.sol#817) is not in

↪→ CapWords

Event Mindx.tax_fee(uint256,uint256) (token.sol#818) is not in CapWords

Parameter Mindx.enableTrading(bool)._status (token.sol#839) is not in

↪→ mixedCase

Parameter Mindx.taxChange(uint256,uint256)._b (token.sol#845) is not in

↪→ mixedCase

Parameter Mindx.taxChange(uint256,uint256)._s (token.sol#845) is not in

↪→ mixedCase

Parameter Mindx.divChange(uint256,uint256)._b (token.sol#852) is not in

↪→ mixedCase

18

Parameter Mindx.divChange(uint256,uint256)._s (token.sol#852) is not in

↪→ mixedCase

Parameter Mindx.divAdress(address,address)._tr (token.sol#859) is not in

↪→ mixedCase

Parameter Mindx.divAdress(address,address)._to (token.sol#859) is not in

↪→ mixedCase

Function Mindx.adding_isExcludedMaxTransactionAmount(address) (token.sol

↪→ #901-904) is not in mixedCase

Parameter Mindx.adding_isExcludedMaxTransactionAmount(address)._a (token

↪→ .sol#901) is not in mixedCase

Function Mindx.removing_isExcludedMaxTransactionAmount(address) (token.

↪→ sol#906-909) is not in mixedCase

Parameter Mindx.removing_isExcludedMaxTransactionAmount(address)._a (

↪→ token.sol#906) is not in mixedCase

Function Mindx.adding_automatedMarketMakerPairs(address) (token.sol

↪→ #911-914) is not in mixedCase

Parameter Mindx.adding_automatedMarketMakerPairs(address)._a (token.sol

↪→ #911) is not in mixedCase

Function Mindx.removing_automatedMarketMakerPairs(address) (token.sol

↪→ #916-919) is not in mixedCase

Parameter Mindx.removing_automatedMarketMakerPairs(address)._a (token.

↪→ sol#916) is not in mixedCase

Variable Mindx.RevenueShare (token.sol#791) is not in mixedCase

Variable Mindx.OwnerShare (token.sol#792) is not in mixedCase

Variable Mindx.TechTeam (token.sol#796) is not in mixedCase

Variable Mindx.TreasuryRevenue (token.sol#797) is not in mixedCase

Variable Mindx.TreasuryOwner (token.sol#798) is not in mixedCase

Variable Mindx._tierTimestamp (token.sol#800) is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #conformance-to-solidity-naming-conventions

INFO:Detectors:

Redundant expression "this (token.sol#552)" inContext (token.sol

↪→ #546-555)

19

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #redundant-statements

INFO:Detectors:

Variable IUniswapV2Router01.addLiquidity(address,address,uint256,uint256

↪→ ,uint256,uint256,address,uint256).amountADesired (token.sol#142)

↪→ is too similar to IUniswapV2Router01.addLiquidity(address,address

↪→ ,uint256,uint256,uint256,uint256,address,uint256).amountBDesired

↪→ (token.sol#143)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #variable-names-too-similar

INFO:Detectors:

Mindx.swapping (token.sol#793) is never used in Mindx (token.sol

↪→ #783-924)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #unused-state-variable

INFO:Detectors:

Mindx.OwnerShare (token.sol#792) should be constant

Mindx.RevenueShare (token.sol#791) should be constant

Mindx.TechTeam (token.sol#796) should be constant

Mindx.swapping (token.sol#793) should be constant

Mindx.uniswapV2Pair (token.sol#795) should be constant

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #state-variables-that-could-be-declared-constant

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

20

5 Conclusion

We examined the design and implementation of MindX in this audit and found several

issues of various severities. We advise MindX team to implement the recommendations

contained in all 8 of our findings to further enhance the code’s security. It is of utmost

priority to start by addressing the most severe exploit discovered by the auditors then

followed by the remaining exploits, and finally we will be conducting a re-audit following

the implementation of the remediation plan contained in this report.

We would much appreciate any constructive feedback or suggestions regarding our

methodology, audit findings, or potential scope gaps in this report.

21

For a Smart Contract Audit, contact us at contact@blockhat.io

22

mailto:contact@blockhat.io

	Introduction
	About MindX
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Mindx.sol
	Unrestricted Access Control [CRITICAL]
	Trading Enabled by Default [CRITICAL]
	Lack of Fee Limits [HIGH]
	Use of Outdated ERC20 and Ownable Contracts [MEDIUM]
	Redundant Address Assignments [MEDIUM]
	Misleading Function Names and Redundancies [MEDIUM]
	Inefficient Use of Arithmetic Operations [LOW]
	Unclear Purpose of Tier Timestamps [INFORMATIONAL]

	Static Analysis (Slither)
	Conclusion

