
BlockPark

Smart Contract Security Audit

Prepared byBlockHat

April 13th, 2023 -April 15th, 2023

BlockHat.io

contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client BlockPark

Version 0.1

Classification Public

Scope

TheBlockPark Contract in theBlockPark Repository

Link Address

https://bscscan.com/address/
0xEc202b99b5ac4c48f3864cF159369ed1368B62DA#
code

0xEc202b99b5ac4c48f3864cF159369ed1368B62DA

Files MD5Hash

/PropToken.sol caa18a9d87cd7fe81608331e1ad06923

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

2

https://bscscan.com/address/0xEc202b99b5ac4c48f3864cF159369ed1368B62DA#code
https://bscscan.com/address/0xEc202b99b5ac4c48f3864cF159369ed1368B62DA#code
https://bscscan.com/address/0xEc202b99b5ac4c48f3864cF159369ed1368B62DA#code
mailto:contact@blockhat.io

Contents

1 Introduction 4

1.1 About BlockPark . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

A PropToken.sol . 7

A.1 Centralized control over blacklist andwhitelist [MEDIUM] 7

A.2 Contract ownership transfer [MEDIUM] 8

A.3 Inconsistent use of access control [MEDIUM] 9

A.4 Unnecessary ownership pattern [LOW] 11

A.5 No token recoverymechanism [LOW] 12

A.6 Incorrect use ofmsg.sender [LOW] 13

A.7 Token transfers blockedwithout distinction during pause [LOW] . . 14

A.8 Missing address verification [LOW] 15

A.9 Floating Pragma [LOW] . 16

4 Static Analysis (Slither) 18

5 Conclusion 23

3

1 Introduction

BlockPark engaged BlockHat to conduct a security assessment on the BlockPark begin-

ning on April 13th, 2023 and ending April 15th, 2023. In this report, we detail our methodical

approachtoevaluatepotentialsecurity issuesassociatedwiththe implementationofsmart

contracts, by exposing possible semantic discrepancies between the smart contract code

and design document, and by recommending additional ideas to optimize the existing code.

Our findings indicate that the current version of smart contracts can still be enhanced fur-

ther due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About BlockPark

BlockPark is a solution based real estate investment platform tokenizing real estate

ownership for buyers and sellers interested in building wealth while earning passive

income. Users are given tools to create andmanage their assets usingBlockPark property

management software and incentivized to grow their portfolio using PROP tokens.

Issuer BlockPark

Website https://theblockpark.com/

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

BlockHat used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

https://theblockpark.com/

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the BlockPark imple-

mentation. During the first part of our audit, we examine the smart contract source code

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts arewell-designed and constructed, but their implemen-

tation might be improved by addressing the discovered flaws, which include , 3 medium-

severity, 6 low-severity vulnerabilities.

Vulnerabilities Severity Status

Centralized control over blacklist andwhitelist MEDIUM Not fixed

Contract ownership transfer MEDIUM Not fixed

Inconsistent use of access control MEDIUM Not fixed

Unnecessary ownership pattern LOW Not fixed

No token recoverymechanism LOW Not fixed

Incorrect use ofmsg.sender LOW Not fixed

Token transfers blocked without distinction during

pause

LOW Not fixed

Missing address verification LOW Not fixed

Floating Pragma LOW Not fixed

6

3 FindingDetails

A PropToken.sol

A.1 Centralizedcontroloverblacklistandwhitelist [MEDIUM]

Description:

The contract provides the ability for administrators to add or remove addresses from the

blacklist and whitelist, which could lead to potential centralization and censorship

concerns for users.

Code:

Listing 1: PropToken.sol

38 function changeWhitelist(address _user, bool _status)

39 public

40 onlyRole(ADMIN_ROLE)

41 {

42 whitelist[_user] = _status;

43 emit WhitelistChanged(_user, _status);

44 }

46 function changeBlocklist(address _user, bool _status)

47 public

48 onlyRole(ADMIN_ROLE)

49 {

50 blocklist[_user] = _status;

51 emit BlocklistChanged(_user, _status);

52 }

7

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Consider implementing a more decentralized approach for managing the blacklist and

whitelist, such as using a decentralized governance model where token holders can vote

on additions or removals from the lists. Alternatively, assess the necessity of these

features and consider removing them if they are not essential for the contract’s

functionality.

Status -Not fixed

A.2 Contract ownership transfer [MEDIUM]

Description:

The contract allows transferring ownership, but the ADMIN_ROLE is not updated accord-

ingly.

Code:

Listing 2: PropToken.sol

69 function setNewOwner(address _newOwner) external {

70 require(

71 owner == _msgSender(),

72 "This function can only be called by the current owner."

73);

74 emit OwnershipTransfered(owner, _newOwner);

75 owner = _newOwner;

76 }

8

Risk Level:

Likelihood – 3

Impact - 2

Recommendation:

Add a function to remove the ADMIN_ROLE from the old owner and grant it to the new

owner.

Status -Not fixed

A.3 Inconsistent use of access control [MEDIUM]

Description:

ThesetNewOwnerfunctionallowsonly thecurrentownertochangeownership,whileother

all functions use theADMIN_ROLE for access control.

Code:

Listing 3: PropToken.sol

69 function setNewOwner(address _newOwner) external {

70 require(

71 owner == _msgSender(),

72 "This function can only be called by the current owner."

73);

74 emit OwnershipTransfered(owner, _newOwner);

75 owner = _newOwner;

76 }

Listing 4: PropToken.sol

30 function pause() public onlyRole(ADMIN_ROLE) {

31 _pause();

32 }

9

Listing 5: PropToken.sol

34 function unpause() public onlyRole(ADMIN_ROLE) {

35 _unpause();

36 }

Listing 6: PropToken.sol

38 function changeWhitelist(address _user, bool _status)

39 public

40 onlyRole(ADMIN_ROLE)

41 {

42 whitelist[_user] = _status;

43 emit WhitelistChanged(_user, _status);

44 }

Listing 7: PropToken.sol

46 function changeBlocklist(address _user, bool _status)

47 public

48 onlyRole(ADMIN_ROLE)

49 {

50 blocklist[_user] = _status;

51 emit BlocklistChanged(_user, _status);

52 }

Risk Level:

Likelihood – 4

Impact - 2

Recommendation:

Modify the setNewOwner function to use the ADMIN_ROLE for access control, ensuring

consistent access control across administrative functions.

10

Status -Not fixed

A.4 Unnecessary ownership pattern [LOW]

Description:

The contract implements a customownership pattern, but it could rely on AccessControl’s

built-in functionality.

Code:

Listing 8: PropToken.sol

11 address private owner;

Listing 9: PropToken.sol

27 owner = msg.sender;

Listing 10: PropToken.sol

69 function setNewOwner(address _newOwner) external {

70 require(

71 owner == _msgSender(),

72 "This function can only be called by the current owner."

73);

74 emit OwnershipTransfered(owner, _newOwner);

75 owner = _newOwner;

76 }

Listing 11: PropToken.sol

82 function getOwner() public view returns (address) {

83 return owner;

84 } owner = msg.sender;

11

Risk Level:

Likelihood – 2

Impact - 1

Recommendation:

Remove the custom ownership pattern and rely on AccessControl’s built-in functionality

formanaging roles and access control.

Status -Not fixed

A.5 No token recoverymechanism [LOW]

Description:

The contract does not include amechanism to recover tokens accidentally sent to the con-

tract address.

Code:

Listing 12: PropToken.sol

8 contract PropToken is ERC20, Pausable, AccessControl {

Risk Level:

Likelihood – 2

Impact - 2

Recommendation:

Addatokenrecovery function thatallowsthecontractowneroranadministrator torecover

tokens accidentally sent to the contract address.

12

Status -Not fixed

A.6 Incorrect use ofmsg.sender [LOW]

Description:

The _beforeTokenTransfer functionusesmsg.sender insteadof _from to check forwhitelist

status.

Code:

Listing 13: PropToken.sol

54 function _beforeTokenTransfer(

55 address _from,

56 address _to,

57 uint256 _amount

58) internal override {

59 require(

60 !blocklist[_from] && !blocklist[_to],

61 "Address in the blocklisted."

62);

63 if (paused()) {

64 require(whitelist[msg.sender], "Token on pause.");

65 }

66 super._beforeTokenTransfer(_from, _to, _amount);

67 }

Risk Level:

Likelihood – 2

Impact - 2

13

Recommendation:

Replacemsg.senderwith _from to correctly check the address initiating the token transfer

during a paused state.

Status -Not fixed

A.7 Token transfers blocked without distinction during

pause [LOW]

Description:

When the contract is paused, all token transfers are blocked except for those initiated by

whitelisted addresses. Thismay cause potential disruptions for regular userswho are not

whitelisted.

Code:

Listing 14: PropToken.sol

54 function _beforeTokenTransfer(

55 address _from,

56 address _to,

57 uint256 _amount

58) internal override {

59 require(

60 !blocklist[_from] && !blocklist[_to],

61 "Address in the blocklisted."

62);

63 if (paused()) {

64 require(whitelist[msg.sender], "Token on pause.");

65 }

66 super._beforeTokenTransfer(_from, _to, _amount);

67 }

14

Risk Level:

Likelihood – 2

Impact - 2

Recommendation:

Evaluate the intended use case for the pause function and consider allowing specific types

of transfers to continue during the paused state if required. For example, if the purpose of

thepause function is tohalt trading incaseofanemergency, itmaybeworthallowing trans-

fers between regular userswhile blocking transfers to and fromexchanges.

Status -Not fixed

A.8 Missing address verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type argument change-

Whitelist , changeBlocklist and setNewOwner function should include a zero-address test

for the address _user and address _newOwner

Code:

Listing 15: PropToken.sol

38 function changeWhitelist(address _user, bool _status)

39 public

40 onlyRole(ADMIN_ROLE)

41 {

42 whitelist[_user] = _status;

43 emit WhitelistChanged(_user, _status);

44 }

46 function changeBlocklist(address _user, bool _status)

47 public

15

48 onlyRole(ADMIN_ROLE)

49 {

50 blocklist[_user] = _status;

51 emit BlocklistChanged(_user, _status);

52 }

Listing 16: PropToken.sol

69 function setNewOwner(address _newOwner) external {

70 require(

71 owner == _msgSender(),

72 "This function can only be called by the current owner."

73);

74 emit OwnershipTransfered(owner, _newOwner);

75 owner = _newOwner;

76 }

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

It is recommended toverify that theaddressprovided in thearguments isdifferent fromthe

address(0) .

Status -Not fixed

A.9 Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.8.17. Contracts should be deployed

using thesamecompilerversionandflags thatwereusedduring the testingprocess. Lock-

ing the pragma helps ensuring that contracts are not unintentionally deployed using an-

16

other pragma, such as an obsolete version that may introduce issues in the contract sys-

tem.

Code:

Listing 17: PropToken.sol

2 pragma solidity ^0.8.17;

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

Consider locking the pragma version. It is advised that floating pragma not be used in pro-

duction.Both truffle-config.js and hardhat.config.js support locking the pragma version.

Status -Not fixed

17

4 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing

methodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

used to test mathematical relationships between Solidity instances statically and

variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

PropToken.setNewOwner(address)._newOwner (PropToken.sol#69) lacks a zero

↪→ -check on :

- owner = _newOwner (PropToken.sol#75)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #missing-zero-address-validation

Different versions of Solidity are used:

- Version used: ['^0.8.0', '^0.8.17']

- ^0.8.17 (PropToken.sol#2)

- ^0.8.0 (node_modules/@openzeppelin/contracts/access/

↪→ AccessControl.sol#4)

- ^0.8.0 (node_modules/@openzeppelin/contracts/access/

↪→ IAccessControl.sol#4)

- ^0.8.0 (node_modules/@openzeppelin/contracts/security/Pausable.

↪→ sol#4)

- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/ERC20.

↪→ sol#4)

- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/IERC20

↪→ .sol#4)

- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/

↪→ extensions/IERC20Metadata.sol#4)

18

- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context.sol

↪→ #4)

- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/Strings.sol

↪→ #4)

- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/

↪→ introspection/ERC165.sol#4)

- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/

↪→ introspection/IERC165.sol#4)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #different-pragma-directives-are-used

AccessControl._setRoleAdmin(bytes32,bytes32) (node_modules/@openzeppelin

↪→ /contracts/access/AccessControl.sol#214-218) is never used and

↪→ should be removed

AccessControl._setupRole(bytes32,address) (node_modules/@openzeppelin/

↪→ contracts/access/AccessControl.sol#205-207) is never used and

↪→ should be removed

Context._msgData() (node_modules/@openzeppelin/contracts/utils/Context.

↪→ sol#21-23) is never used and should be removed

ERC20._burn(address,uint256) (node_modules/@openzeppelin/contracts/token

↪→ /ERC20/ERC20.sol#280-295) is never used and should be removed

Strings.toHexString(address) (node_modules/@openzeppelin/contracts/utils

↪→ /Strings.sol#72-74) is never used and should be removed

Strings.toHexString(uint256) (node_modules/@openzeppelin/contracts/utils

↪→ /Strings.sol#41-52) is never used and should be removed

Strings.toString(uint256) (node_modules/@openzeppelin/contracts/utils/

↪→ Strings.sol#16-36) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #dead-code

Pragma version^0.8.17 (PropToken.sol#2) necessitates a version too

↪→ recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.7

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/access/

↪→ AccessControl.sol#4) allows old versions

19

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/access/

↪→ IAccessControl.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/security/

↪→ Pausable.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/

↪→ ERC20.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/

↪→ IERC20.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/

↪→ extensions/IERC20Metadata.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context

↪→ .sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/Strings

↪→ .sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/

↪→ introspection/ERC165.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/

↪→ introspection/IERC165.sol#4) allows old versions

solc-0.8.17 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #incorrect-versions-of-solidity

Parameter PropToken.changeWhitelist(address,bool)._user (PropToken.sol

↪→ #38) is not in mixedCase

Parameter PropToken.changeWhitelist(address,bool)._status (PropToken.sol

↪→ #38) is not in mixedCase

Parameter PropToken.changeBlocklist(address,bool)._user (PropToken.sol

↪→ #46) is not in mixedCase

Parameter PropToken.changeBlocklist(address,bool)._status (PropToken.sol

↪→ #46) is not in mixedCase

Parameter PropToken.setNewOwner(address)._newOwner (PropToken.sol#69) is

↪→ not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #conformance-to-solidity-naming-conventions

20

pause() should be declared external:

- PropToken.pause() (PropToken.sol#30-32)

unpause() should be declared external:

- PropToken.unpause() (PropToken.sol#34-36)

changeWhitelist(address,bool) should be declared external:

- PropToken.changeWhitelist(address,bool) (PropToken.sol#38-44)

changeBlocklist(address,bool) should be declared external:

- PropToken.changeBlocklist(address,bool) (PropToken.sol#46-52)

decimals() should be declared external:

- ERC20.decimals() (node_modules/@openzeppelin/contracts/token/

↪→ ERC20/ERC20.sol#87-89)

- PropToken.decimals() (PropToken.sol#78-80)

getOwner() should be declared external:

- PropToken.getOwner() (PropToken.sol#82-84)

grantRole(bytes32,address) should be declared external:

- AccessControl.grantRole(bytes32,address) (node_modules/

↪→ @openzeppelin/contracts/access/AccessControl.sol#144-146)

revokeRole(bytes32,address) should be declared external:

- AccessControl.revokeRole(bytes32,address) (node_modules/

↪→ @openzeppelin/contracts/access/AccessControl.sol#159-161)

renounceRole(bytes32,address) should be declared external:

- AccessControl.renounceRole(bytes32,address) (node_modules/

↪→ @openzeppelin/contracts/access/AccessControl.sol#179-183)

name() should be declared external:

- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/

↪→ ERC20.sol#62-64)

symbol() should be declared external:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/

↪→ ERC20/ERC20.sol#70-72)

totalSupply() should be declared external:

- ERC20.totalSupply() (node_modules/@openzeppelin/contracts/token

↪→ /ERC20/ERC20.sol#94-96)

balanceOf(address) should be declared external:

21

- ERC20.balanceOf(address) (node_modules/@openzeppelin/contracts/

↪→ token/ERC20/ERC20.sol#101-103)

transfer(address,uint256) should be declared external:

- ERC20.transfer(address,uint256) (node_modules/@openzeppelin/

↪→ contracts/token/ERC20/ERC20.sol#113-117)

approve(address,uint256) should be declared external:

- ERC20.approve(address,uint256) (node_modules/@openzeppelin/

↪→ contracts/token/ERC20/ERC20.sol#136-140)

transferFrom(address,address,uint256) should be declared external:

- ERC20.transferFrom(address,address,uint256) (node_modules/

↪→ @openzeppelin/contracts/token/ERC20/ERC20.sol#158-167)

increaseAllowance(address,uint256) should be declared external:

- ERC20.increaseAllowance(address,uint256) (node_modules/

↪→ @openzeppelin/contracts/token/ERC20/ERC20.sol#181-185)

decreaseAllowance(address,uint256) should be declared external:

- ERC20.decreaseAllowance(address,uint256) (node_modules/

↪→ @openzeppelin/contracts/token/ERC20/ERC20.sol#201-210)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #public-function-that-could-be-declared-external

PropToken.sol analyzed (11 contracts with 78 detectors), 44 result(s)

↪→ found

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review. w

22

5 Conclusion

We examined the design and implementation of BlockPark in this audit and found several

issues of various severities. We advise BlockPark team to implement the

recommendations contained in all 9 of our findings to further enhance the code’s security.

It is of utmost priority to start by addressing the most severe exploit discovered by the

auditors then followed by the remaining exploits, and finally we will be conducting a

re-audit following the implementation of the remediation plan contained in this report.

We would much appreciate any constructive feedback or suggestions regarding our

methodology, audit findings, or potential scope gaps in this report.

23

For a Smart Contract Audit, contact us at contact@blockhat.io

24

mailto:contact@blockhat.io

	Introduction
	About BlockPark
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	PropToken.sol
	Centralized control over blacklist and whitelist [MEDIUM]
	Contract ownership transfer [MEDIUM]
	Inconsistent use of access control [MEDIUM]
	Unnecessary ownership pattern [LOW]
	No token recovery mechanism [LOW]
	Incorrect use of msg.sender [LOW]
	Token transfers blocked without distinction during pause [LOW]
	Missing address verification [LOW]
	Floating Pragma [LOW]

	Static Analysis (Slither)
	Conclusion

