
Gamezland

Smart Contract Security Audit

Prepared byBlockHat

september 22nd, 2022 - september 23rd, 2022

BlockHat.io

contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client Gurpreet Chauhan

Version 1.0

Classification Confidential

Scope

TheGamezland Contract in theGamezland Repository

Files MD5Hash

contract/gamezland.sol 5ebf9fcda2f69dbc2e62115a2ec18dbe

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

2

mailto:contact@blockhat.io

Contents

1 Introduction 4

1.1 About Gamezland . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

A gamezland.sol . 7

A.1 burnFrom() is a public function [CRITICAL] 7

A.2 Error in function logic [CRITICAL] . 8

A.3 Centralisation risk [HIGH] . 9

A.4 Mint should be locked for 2 years [HIGH] 10

A.5 Usage of tx.origin [MEDIUM] . 11

A.6 Floating Pragma [LOW] . 12

A.7 Missing address verification [LOW] 13

4 Best Practices 14

BP.1 SPDX license identifier not provided in source file. 14

BP.2 Arguments initialization . 14

5 Static Analysis (Slither) 15

6 Conclusion 17

3

1 Introduction

Gamezland engagedBlockHat to conduct a security assessment on theGamezland begin-

ning on september 22nd, 2022 and ending september 23rd, 2022. In this report,we detail our

methodical approach to evaluate potential security issues associated with the implemen-

tationof smart contracts, by exposingpossible semantic discrepanciesbetween thesmart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Gamezland

GAMEZLAND is a GameFi Metaverse with NFT economy powered by $GAME Token.

GAMEZLAND citizens will be able to play various p2e games and earn $GAME, own game

items asNFTs and trade them, visit NFT exhibitions and 3DNFTmarketplaces, buy avatars,

weapon skins, virtual estate, clothes, as well as attend virtual concerts, runway shows

and other events.

Issuer Gurpreet Chauhan

Website www.gamezland.io

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

BlockHat used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

www.gamezland.io

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Gamezland imple-

mentation. During the first part of our audit, we examine the smart contract source code

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include 2

critical-severity, 2 high-severity, 1medium-severity, 2 low-severity vulnerabilities.

Vulnerabilities Severity Status

burnFrom() is a public function CRITICAL Fixed

Error in function logic CRITICAL Fixed

Centralisation risk HIGH Fixed

Mint should be locked for 2 years HIGH Fixed

Usage of tx.origin MEDIUM Fixed

Floating Pragma LOW Fixed

Missing address verification LOW Fixed

6

3 FindingDetails

A gamezland.sol

A.1 burnFrom() is a public function [CRITICAL]

Description:

Anyone can call burnFrom function andburn tokens fromany addresshewant. This repre-

sents a big risk on the user and the owner side.

Code:

Listing 1: gamezland.sol

82 function burnFrom(address from, uint amount) public {

83 require(amount <= balances[from], 'More than the balance!');

84 require(amount <= allowed[from][msg.sender], 'More than allowed

↪→ !');

86 totalSupply -= amount;

87 balances[from] -= amount;

88 allowed[from][msg.sender] -= amount;

90 emit Transfer(from, address(0), amount);

91 }

Risk Level:

Likelihood – 5

Impact - 5

Recommendation:

Wesuggest to restrict this function to only the owner.

7

Status - Fixed

The dev Team fixed the issue

A.2 Error in function logic [CRITICAL]

Description:

The require statement is always false unless if amount=0 , somint() will never function.

Code:

Listing 2: gamezland.sol

63 function mint(address recipient, uint amount) public {

64 require(msg.sender == minter, 'Only minter can do this!');

65 require(totalSupply + amount >= totalSupply);

67 totalSupply += amount;

68 balances[recipient] += amount;

70 emit Transfer(address(0), recipient, amount);

71 }

Risk Level:

Likelihood – 5

Impact - 5

Recommendation:

We recommend removing this require statement. If it is meant that the amount should not

exceed amax supply, you should add amaxsupply variable and define it in the contructor.

Status - Fixed

The dev Team fixed the issue

8

A.3 Centralisation risk [HIGH]

Description:

Besides that this fuction is public. If the owner restrict the function to his self he will have

super control over the tokens distrubution This represents a centralisation risk.

Code:

Listing 3: gamezland.sol

82 function burnFrom(address from, uint amount) public {

83 require(amount <= balances[from], 'More than the balance!');

84 require(amount <= allowed[from][msg.sender], 'More than allowed

↪→ !');

86 totalSupply -= amount;

87 balances[from] -= amount;

88 allowed[from][msg.sender] -= amount;

90 emit Transfer(from, address(0), amount);

91 }

Risk Level:

Likelihood – 5

Impact - 4

Recommendation:

Wesuggest removing this function.

Status - Fixed

The dev Team fixed the issue

9

A.4 Mint should be locked for 2 years [HIGH]

Description:

As the white paper states mint() function should be restricted for 2 years. If not this will

remove trust between the owner and the users.

Code:

Listing 4: gamezland.sol

82 function burnFrom(address from, uint amount) public {

83 require(amount <= balances[from], 'More than the balance!');

84 require(amount <= allowed[from][msg.sender], 'More than allowed

↪→ !');

86 totalSupply -= amount;

87 balances[from] -= amount;

88 allowed[from][msg.sender] -= amount;

90 emit Transfer(from, address(0), amount);

91 }

Risk Level:

Likelihood – 4

Impact - 3

Recommendation:

We suggest to add a require statement that you can only use this function after 2 years of

deploying the smart contract.

Status - Fixed

The dev Team fixed the issue

10

A.5 Usage of tx.origin [MEDIUM]

Description:

Never use tx.origin for authorization, another contract can have a method which will call

yourcontract (wheretheuserhassomefundsfor instance)andyourcontractwillauthorize

that transaction as your address is in tx.origin.

Code:

Listing 5: gamezland.sol

20 constructor(string memory _name, string memory _symbol, uint _supply

↪→ , uint _dec, address _owner) {

21 name = _name;

22 symbol = _symbol;

23 decimals = _dec;

24 totalSupply = _supply * 10 ** _dec;

25 balances[_owner] = totalSupply;

26 minter = tx.origin;

27 emit Transfer(address(0), _owner, totalSupply);

28 }

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

You should use msg.sender for authorization (if another contract calls your contract

msg.sender will be the address of the contract and not the address of the user who called

the contract).

11

Status - Fixed

The dev Team fixed the issue

A.6 Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.8.2 . Contracts should be deployed

using thesamecompiler versionand flags thatwereusedduring the testingprocess.Lock-

ing the pragmahelps ensure that contracts are not unintentionally deployed using another

pragma, such as an obsolete version, thatmay introduce issues in the contract system.

Code:

Listing 6: gamezland.sol

5 pragma solidity ^0.8.2;

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Status - Fixed

The dev Team fixed the issue.

12

A.7 Missing address verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type argument _owner

should include a zero-address test, otherwise, the contract’s functionalitymaybecome in-

accessible.

Code:

Listing 7: gamezland.sol

20 constructor(string memory _name, string memory _symbol, uint _supply,

↪→ uint _dec, address _owner) {

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

Status - Fixed

The dev Team fixed the issue.

13

4 Best Practices

BP.1 SPDX license identifier not provided in source

file.

Description:

SPDX license identifier not provided in source file. Before publishing, consider adding a

comment containing ”SPDX-License-Identifier: <SPDX-License>” to each source file. Use

”SPDX-License-Identifier: UNLICENSED” for non-open-source code.

BP.2 Arguments initialization

Description:

It is better to initialize Arguments to prevent errors.

Code:

Listing 8: gamezland.sol

20 constructor(string memory _name, string memory _symbol, uint _supply

↪→ , uint _dec, address _owner) {

21 name = _name;

22 symbol = _symbol;

23 decimals = _dec;

24 totalSupply = _supply * 10 ** _dec;

25 balances[_owner] = totalSupply;

26 minter = tx.origin;

27 emit Transfer(address(0), _owner, totalSupply);

28 }

14

5 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing

methodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

used to test mathematical relationships between Solidity instances statically and

variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

Compilation warnings/errors on gamezland.sol:

Warning: SPDX license identifier not provided in source file. Before

↪→ publishing, consider adding a comment containing "SPDX-License-

↪→ Identifier: <SPDX-License>" to each source file. Use "SPDX-

↪→ License-Identifier: UNLICENSED" for non-open-source code. Please

↪→ see https://spdx.org for more information.

--> gamezland.sol

Pragma version^0.8.2 (gamezland.sol#5) allows old versions

solc-0.8.12 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #incorrect-versions-of-solidity

balanceOf(address) should be declared external:

- Token.balanceOf(address) (gamezland.sol#30-32)

transfer(address,uint256) should be declared external:

- Token.transfer(address,uint256) (gamezland.sol#34-40)

transferFrom(address,address,uint256) should be declared external:

15

- Token.transferFrom(address,address,uint256) (gamezland.sol

↪→ #42-50)

approve(address,uint256) should be declared external:

- Token.approve(address,uint256) (gamezland.sol#52-56)

allowance(address,address) should be declared external:

- Token.allowance(address,address) (gamezland.sol#58-60)

mint(address,uint256) should be declared external:

- Token.mint(address,uint256) (gamezland.sol#63-71)

burn(uint256) should be declared external:

- Token.burn(uint256) (gamezland.sol#73-80)

burnFrom(address,uint256) should be declared external:

- Token.burnFrom(address,uint256) (gamezland.sol#82-91)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #public-function-that-could-be-declared-external

gamezland.sol analyzed (1 contracts with 78 detectors), 10 result(s)

↪→ found

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

16

6 Conclusion

We examined the design and implementation of Gamezland in this audit and found several

issues of various severities. We advise Gurpreet Chauhan team to implement the

recommendations contained in all 7 of our findings to further enhance the code’s security.

It is of utmost priority to start by addressing the most severe exploit discovered by the

auditors then followed by the remaining exploits, and finally we will be conducting a

re-audit following the implementation of the remediation plan contained in this report.

We would much appreciate any constructive feedback or suggestions regarding our

methodology, audit findings, or potential scope gaps in this report.

17

For a Smart Contract Audit, contact us at contact@blockhat.io

18

mailto:contact@blockhat.io

	Introduction
	About Gamezland
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	gamezland.sol
	burnFrom() is a public function [CRITICAL]
	Error in function logic [CRITICAL]
	Centralisation risk [HIGH]
	 Mint should be locked for 2 years [HIGH]
	Usage of tx.origin [MEDIUM]
	Floating Pragma [LOW]
	Missing address verification [LOW]

	Best Practices
	SPDX license identifier not provided in source file.
	Arguments initialization

	Static Analysis (Slither)
	Conclusion

