» BLOCKHAT

SECURITY

Gamezland

Smart Contract Security Audit

Prepared by BlockHat
september 229, 2022 - september 23", 2022
BlockHat.io
contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client Gurpreet Chauhan

Version 1.0

Classification Confidential

Scope

The Gamezland Contractin the Gamezland Repository

Files

MD5 Hash

contract/gamezland.sol

Sebf9fcda2f69dbc2e62115a2ec18dbe

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

mailto:contact@blockhat.io

Contents

1 Introduction 4
11 AboutGamezland 4
1.2 Approach &Methodology 4

121 RiskMethodology 5

2 Findings Overview
21 SUMMArY . . . e
22 KeyFindings e

3 Finding Details 7
A gamezland.sol 7

Al burnFrom() is a publicfunction_ 7
A2 Errorinfunctionlogic_ 8
A3 Centralisationrisk [HIGH] 9
A4 Mint should be locked for 2years [[HIGH] 10
A5 Usageoftxorigin [MEDIUM] {ll
A6 Floating Pragma- 12
AT Missing address verification - 13

4 BestPractices 14
BP.1 SPDXlicenseidentifier not providedinsourcefile.. 14
BP.2 Argumentsinitialization o 14

5 Static Analysis (Slither) 15

6 Conclusion 17

1 Introduction

Gamezland engaged BlockHat to conduct a security assessment on the Gamezland begin-
ning on september 22"¢, 2022 and ending september 23", 2022. In this report, we detail our
methodical approach to evaluate potential security issues associated with the implemen-
tation of smart contracts, by exposing possible semantic discrepancies between the smart
contract code and design document, and by recommending additionalideas to optimize the
existing code. Our findings indicate that the current version of smart contracts can still be
enhanced further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About Gamezland

GAMEZLAND is a GameFi Metaverse with NFT economy powered by $GAME Token.
GAMEZLAND citizens will be able to play various p2e games and earn $GAME, own game
items as NFTs and trade them, visit NFT exhibitions and 3D NFT marketplaces, buy avatars,
weapon skins, virtual estate, clothes, as well as attend virtual concerts, runway shows
and other events.

Issuer Gurpreet Chauhan
Website www.gamezland. io
Type Solidity Smart Contract
Audit Method Whitebox

1.2 Approach & Methodology

BlockHat used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

www.gamezland.io

1.21 Risk Methodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

‘6 High
g Medium
— Low Medium
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Gamezland imple-
mentation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include 2
critical-severity, Z high-severity, medium-severity, 2 low-severity vulnerabilities.

Vulnerabilities Severity | Status
burnFrom() is a public function Fixed
Errorinfunction logic Fixed
Centralisationrisk HIGH Fixed
Mint should be locked for 2 years HIGH Fixed
Usage of tx.origin MEDIUM | Fixed

Floating Pragma Fixed
Missing address verification Fixed

3 Finding Details

A gamezland.sol

Al burnFrom()is a public function _

Description:

Anyone can call burnFrom function and burn tokens from any address he want. This repre-
sents abigrisk onthe user and the owner side.

Code:

Risk Level:

Likelihood - 5
Impact -5

Recommendation:

We suggest to restrict this function to only the owner.

~

Status - Fixed

The devTeam fixed the issue

A.2 Errorinfunction logic_

Description:

The require statement is always false unless if amount=0, so mint() will never function.

Code:

Risk Level:

Likelihood - 5
Impact -5

Recommendation:

We recommend removing this require statement. If it is meant that the amount should not
exceed a max supply, you should add a maxsupply variable and define it in the contructor.

Status - Fixed

The devTeam fixed the issue

oo

A.3 Centralisationrisk -

Description:

Besides that this fuction is public. If the owner restrict the function to his self he will have
super control over the tokens distrubution This represents a centralisation risk.

Code:

Risk Level:

Likelihood -5
Impact - 4

Recommendation:

We suggest removing this function.

Status - Fixed

The devTeam fixed the issue

~O

A4 Mintshould be locked for 2 years -

Description:

As the white paper states mint() function should be restricted for 2 years. If not this will
remove trust between the owner and the users.

Code:

Risk Level:

Likelihood - 4
Impact - 3

Recommendation:

We suggest to add a require statement that you can only use this function after 2 years of
deploying the smart contract.

Status - Fixed

The devTeam fixed the issue

A5 Usageoftx.origin _

Description:

Never use tx.origin for authorization, another contract can have a method which will call
your contract (wherethe user has some funds forinstance) and your contract willauthorize
that transaction as your address s in tx.origin.

Code:

Risk Level:

Likelihood - 3
Impact - 3

Recommendation:

You should use msg.sender for authorization (if another contract calls your contract
msg.sender will be the address of the contract and not the address of the user who called
the contract).

Status - Fixed

The dev Team fixed the issue

A.6 Floating Pragma -

Description:

The contract makes use of the floating-point pragma 0.8.2. Contracts should be deployed
using the same compiler version and flags that were used during the testing process.Lock-
ing the pragma helps ensure that contracts are not unintentionally deployed using another
pragma, such as an obsolete version, that may introduce issues in the contract system.

Code:

Listing 6: gamezland.sol

5 pragma solidity ~0.8.2;

Risk Level:
Likelihood -1

Impact -3
Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Status - Fixed

The dev Team fixed the issue.

12

A.7 Missing address verification -

Description:

Certain functions lack a safety check in the address, the address-type argument _owner
should include a zero-address test, otherwise, the contract’s functionality may become in-
accessible.

Code:

Listing 7: gamezland.sol

2 constructor(string memory _name, string memory _symbol, uint _supply,

< uint _dec, address _owner) {

Risk Level:

Likelihood -1
Impact -3

Recommendation:

We recommend that you make sure the addresses provided in the arguments are different
fromthe address(0).

Status - Fixed

The dev Team fixed the issue.

13

4 Best Practices

BP.1 SPDXlicense identifier not provided in source
file.

Description:

SPDX license identifier not provided in source file. Before publishing, consider adding a
comment containing "SPDX-License-ldentifier: <SPDX-License>" to each source file. Use
"SPDX-License-Identifier: UNLICENSED"” for non-open-source code.

BP.2 Argumentsinitialization

Description:

Itis better toinitialize Arguments to prevent errors.

Code:

14

5 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing
methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
used to test mathematical relationships between Solidity instances statically and
variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs
throughout the entire codebase.

Results:

15

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

16

6 Conclusion

We examined the design and implementation of Gamezland in this audit and found several
issues of various severities. We advise Gurpreet Chauhan team to implement the
recommendations contained in all 7 of our findings to further enhance the code’s security.
It is of utmost priority to start by addressing the most severe exploit discovered by the
auditors then followed by the remaining exploits, and finally we will be conducting a
re-audit following the implementation of the remediation plan contained in this report.

We would much appreciate any constructive feedback or suggestions regarding our
methodology, audit findings, or potential scope gaps in this report.

17

» BLOCKHAT

SECURITY

For a Smart Contract Audit, contact us at contact@blockhat.io

18

mailto:contact@blockhat.io

	Introduction
	About Gamezland
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	gamezland.sol
	burnFrom() is a public function [CRITICAL]
	Error in function logic [CRITICAL]
	Centralisation risk [HIGH]
	 Mint should be locked for 2 years [HIGH]
	Usage of tx.origin [MEDIUM]
	Floating Pragma [LOW]
	Missing address verification [LOW]

	Best Practices
	SPDX license identifier not provided in source file.
	Arguments initialization

	Static Analysis (Slither)
	Conclusion

