» BLOCKHAT

SECURITY

SHEER

Smart Contract Security Audit

Prepared by BlockHat
October 28", 2023 - November 3", 2023
BlockHat.io
contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client Florim Fluri
Version 0.1
Classification Public
Scope
File Hash

Sheer/presale-eth.sol

49e57cc0f09d4d1ca9e5674d7398aabf

Sheer/SHEER.sol

5813a9fc3be23f76a9c725323be870ed

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

mailto:contact@blockhat.io

Contents

1 Introduction
11 AboutSHEER
1.2 Approach & Methodology . .
121 RiskMethodology . .

2 Findings Overview
21 Summary
2.2 KeyFindings.

3 Finding Details
A presale-ethsol

Al Manipulable Sale Period byOwner_

A2 Inaccurate Token Availability Check_

A3 Missing Address Zero Checks|[HIGH]
A.4 RiskofHardcoding Token Addresses|[HIGH]
A5 Mutable Token Addresses{[HIGH}|
A.6 Missing Value Check for usdtAmount [HIGH}
A7 Missing Value Check forusdcAmount [HIGH]|
A.8 Unchecked TokenTransfer [MEDIUM]
A9 Missing Allowance Checks [MEDIUM]

B Sheersol.

B.1 High fee limit for both buy and sellfees{[HIGH]|
B.2 Use of transfer instead of safeTransfer [MEDIUM]
B.3 Centralization and Owner Privileges-

4 Best Practices

BP.1 Lackof TransparencyinTokenDecimals

BP.2 Token Transfer Instead of TransferFrom
BP.3 Update State Before ExternalCalls

BP.4 Missing Event for setUsdRate
5 Static Analysis (Slither)

6 Conclusion

o N &~ B~

NV 00 993

1 Introduction

Florim Fluri engaged BlockHat to conduct a security assessment on the SHEER beginning
on October 28", 2023 and ending November 37, 2023. In this report, we detail our method-
ical approach to evaluate potential security issues associated with the implementation of
smart contracts, by exposing possible semantic discrepancies between the smart contract
code and design document, and by recommending additional ideas to optimize the existing
code. Ourfindingsindicate that the current version of smart contracts can stillbe enhanced
further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About SHEER

Sheer is a utility token of a worksheer platform.

Issuer Florim Fluri

Website https://worksheer.com
Type Solidity Smart Contract
Audit Method Whitebox

1.2 Approach & Methodology

BlockHat used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

https://worksheer.com

1.21 Risk Methodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

‘6 High
g Medium
— Low Medium
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

Thefollowingis a synopsis of our conclusions from our analysis of the SHEER implementa-
tion. During the first part of our audit, we examine the smart contract source code and run
the codebase via a static code analyzer. The objective here is to find known coding prob-
lems statically and then manually check (reject or confirm) issues highlighted by the tool.
Additionally, we check business logics, system processes, and DeFi-related components
manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include 2

critical-severity, 6 high-severity, - medium-severity, | low-severity vulnerabilities.

Vulnerabilities Severity | Status
Manipulable Sale Period by Owner Fixed
Inaccurate Token Availability Check Not Fixed
Missing Address Zero Checks HIGH Fixed
Risk of Hardcoding Token Addresses HIGH Fixed
Mutable Token Addresses HIGH Fixed
Missing Value Check for usdtAmount HIGH Fixed
Missing Value Check for usdcAmount HIGH Fixed
High fee limit for both buy and sell fees HIGH Fixed
Unchecked Token Transfer MEDIUM | NotFixed
Missing Allowance Checks MEDIUM | Fixed
Use of transferinstead of safeTransfer MEDIUM | Fixed
Centralization and Owner Privileges LOW Acknowledged

3 Finding Details

A presale-eth.sol

A.1 Manipulable Sale Period by Owner_

Description:

The current mechanism allows the owner to arbitrarily change the start and end times of
the presale. This introduces unpredictability and may lead to distrust among participants.
Investors and participants rely on predefined and stable sale periods. Allowing the owner
tochange these parametersin the middle of the sale or just before it begins can harm trust
and even lead to potential misuse or front-running.

Code:

Listing 1: presale-eth.sol

262 function setStartTime(uint256 _startTime) external onlyOwner {
243 startTime = _startTime;

244 }

246 function setEndTime(uint256 _endTime) external onlyOwner {

247 endTime = _endTime;

248 }

Risk Level:

Likelihood - 5

Impact-5

Recommendation:

Implement a mechanism where the presale starts with a dedicated function like startPre-
sale(), which sets the startTime to the current block timestamp and calculates the endTime

7

based on a predefined period, Once the presale has started, prohibit any changes toits du-
ration or early termination by the owner. By utilizing this approach, the presale becomes
more predictable and transparent, with participants having confidence that the sale dura-
tion cannot be manipulated mid-way.

Status - Fixed

A.2 Inaccurate Token Availability Check || ERINSEE

Description:

The contract checks if there are enough tokens in its balance before allowing a purchase.
However, this method doesn’t consider tokens that have already been purchased but not yet
claimed. Without accounting for these unclaimed tokens, the contract might sell more to-
kens than it has available, leading to potentialissues when users try to claim their tokens.

Code:

Listing 2: presale-eth.sol

191 require(amountInTokens <= token.balanceOf (address(this)), "Not

— enough tokens available");

Risk Level:

Likelihood - 4
Impact-5

Recommendation:

Introduce a new state variable, for example, tokensSold, that accumulates the total tokens
sold. Then, modify the require statementto checkthattokensSold + amountinTokensis less
than or equal to the token balance of the contract. This ensures that the contract only sells
tokens that are actually available.

Status - Not Fixed

The addition of the tokensSold = tokensSold.add(amountinTokens); line in the
buyTokensWithUSDT function is a fix that ensures the contract doesn’t sell more tokens
than available. However, it appears that the corresponding buyTokensWithUSDC function
has not been updated with a similar line of code. This omission could lead to the same
issue of overselling tokens, as the tokensSold variable won't accurately reflect the total
number of tokens committed after a USDC transaction. To maintain consistency and
ensure accurate tracking of token sales, the same line should be integrated into the
buyTokensWithUSDC function. This will prevent any potential discrepancies between the
tokens sold and the contract’s balance, thereby safeguarding the integrity of the token sale
process.

A.3 Missing Address Zero Checks [HIGH]

Description:

The constructor initializes the token, usdtToken, and usdcToken with addresses without
checking if they are the zero address. Using a zero address can render the contract
non-functional.

Code:

Listing 3: presale-eth.sol

166 constructor(address _tokenAddress, address _usdtTokenAddress,
— address _usdcTokenAddress, uint256 usdPrice, uint256
— _startTime, uint256 _endTime) {

167 token = IERC20(_tokenAddress);

168 usdtToken = IERC20(_usdtTokenAddress);
169 usdcToken = IERC20(usdcTokenAddress);
170 usdRate = _usdPrice;

m startTime = _startTime;

172 endTime = _endTime;

13 _transferOwnership(msg.sender) ;

174 }

Risk Level:

Likelihood -3
Impact - 4

Recommendation:

Always check if provided addresses are not zero and correct before initializing contract
state variables.

Status - Fixed

A.4 Risk of Hardcoding Token Addresses [[HIGH]

Description:

Smart contracts are immutable once deployed. Mistakes made during deployment cannot
be corrected without redeploying the entire contract. In the provided presale contract, the
addresses fortoken, usdtToken, and usdcToken are provided as parameters during deploy-
ment. This introduces arisk: aninadvertent error during deployment (such as copying and
pasting the wrong address or making atypo) can assign the wrong address to these crucial
variables, leading to a malfunctioning or non-functional contract.

When dealing with well-known tokens like USDT and USDC, their contract addresses on
specific blockchains are fixed and widely recognized. For instance, on the Ethereum main-
net, the address for USDT has been the same since its deployment. Thus, the benefit of dy-
namically setting such addresses is outweighed by the potential risk of human error.

Code:

Listing 4: presale-eth.sol

166 constructor(address _tokenAddress, address _usdtTokenAddress,
< address _usdcTokenAddress, uint256 _usdPrice, uint256
— _startTime, uint256 _endTime) {

167 token = IERC20(_tokenAddress);

168 usdtToken = IERC20(_usdtTokenAddress);

10

Risk Level:

Likelihood -3
Impact - 4

Recommendation:

For widely recognized tokens with fixed addresses, it is recommended to hardcode these
addresses directly into the contract.

Status - Fixed

A5 Mutable Token Addresses -

Description:

The contract allows changing the USDC, USDT and presale token addresses after deploy-
ment. This could lead to potential misuse.

Code:

l

Risk Level:

Likelihood - 4
Impact -3

Recommendation:

Fix the token addresses and don't allow changes after contract deployment.

Status - Fixed

A.6 Missing Value Check for usdtAmount -

Description:

The function buyTokensWithUSDT does not check whether the passed usdtAmount is
greater than 0. This can allow users to call the function with 0 USDT, which would
unnecessarily consume gas without any real transaction.

12

Risk Level:

Likelihood - 3
Impact - 4

Recommendation:

Addarequire statementatthe beginning of the functionto checkthatusdtAmountis greater
than0

Status - Fixed

A.7 Missing Value Check for usdcAmount -

Description:

The function buyTokensWithUSDC does not check whether the passed usdcAmount is
greater than 0. This oversight can allow users to call the function with 0 USDC, leading to
unnecessary gas consumption without any meaningful transaction. Additionally, having
such a check can prevent potential bugs or unintended behaviors.

Code:

14

Risk Level:

Likelihood -3
Impact - 4

Recommendation:

Add a require statement at the beginning of the function to check that usdcAmount is
greaterthan0

Status - Fixed

A.8 UncheckedToken Transfer_

Description:

In the claimTokens function, the transfer method is used without checking its return value
or without using a safer version like safeTransfer. The plain transfer method of the ERC20
standard canfailsilently without reverting the transaction, leading to potential loss of funds
or unintended behaviors.

Code:

15

222 }

Risk Level:

Likelihood -3
Impact - 4

Recommendation:

Replacethetransfer call witharequire statementthat checks the returnvalue of the trans-
fer, or preferably, use asafeTransfer functionfromalibrary like OpenZeppelin's SafeERC20.
Here’s how you can modify it with a require check

Status - Not Fixed

SafeERC20.safeTransfer fromthe OpenZeppelinlibrary, which alreadyincludes checks and
error handling to ensure the safety of token transfers. Unlike the basic transfer method
in the ERC20 standard that may fail silently, safeTransfer will revert the transaction if the
transfer fails. Therefore, the additional require statement to check the return value of safe-
Transferis unnecessary, as safeTransfer willthrow an error and revert the whole transac-
tionifthe transferis unsuccessful. Thisis aredundancy that can be removed to simplify the
code without compromising on security or functionality.

A.9 Missing Allowance Checks [MEDIUM]

Description:

Before transferring tokens using transferFrom, it's important to check if the contract has
the required allowances. Without this check, the transfer can fail.

Code:

Listing 9: presale-eth.sol

w2 require(usdtToken.transferFrom(msg.sender, owner(), amountInUsdt), "USDT

< transfer failed");

16

Risk Level:

Likelihood - 3
Impact -3

Recommendation:

Always check for sufficient allowances before transferring tokens.

Status - Fixed

B Sheer.sol
B.1 High fee limit for both buy and sell fees [HIGH]|

Description:

The updateBuyFees and updateSellFees functions both have a condition where the total
combined fees (for buy and sell) must be kept at 50% or less. A 50% fee is a substantial
amount and might be seen as excessive or unfair by users orinvestors.

Code:

1

~

Risk Level:

Likelihood -5
Impact -5

Recommendation:

It's advisable to reconsider the fee structure and potentially reduce the upper limit. Ensure
that the fee structure is transparent to users and justified for the utility it provides.

Status - Fixed

B.2 Useoftransferinstead of safeTransfer_

Description:

The transfer method can silently fail without reverting the transaction, leading to potential
loss of funds or unintended behavior.

Code:

18

Risk Level:

Likelihood - 3
Impact - 4

Recommendation:

Replace transfer with safeTransfer from a reputable library like OpenZeppelin to ensure
transaction reverts on failure.

Status - Fixed

B.3 Centralizationand Owner Privileges-

Description:

The smart contract contains several functions that can only be called by the owner, provid-
ing a high degree of centralization. For instance, the owner can:

- Enable or disable token trading

- Change fees

- Exclude accounts from fees

- Claim stuck tokens

- Update max transaction amount and wallet amount

« And more...

19

Risk Level:

Likelihood -2
Impact - 2

Recommendation:

Consider introducing decentralized governance or more transparent measures to reduce
the trustrequired by holders in the owner.

Status - Acknowledged

20

4 Best Practices

BP.1 LackofTransparencyinToken Decimals

Description:

For transparency, it's recommended to use the token’s own decimals function instead of
hardcoding values.

Recommendation:

Use the decimals function from the token contract to determine the token’s precision.

BP.2 TokenTransferInstead of TransferFrom

Description:

It's safer to use transferFrom instead of transfer to move tokens from the contract to
users.

Recommendation:

Use transferFrom to transfer tokens to users.

BP.3 Update State Before External Calls

Description:

For safety, state variables should be updated before making external calls.

Recommendation:

Update state variables before making any external calls.

21

BP.4 Missing Event for setUsdRate

Description:

The setUsdRate function updates the usdRate state variable but does not emit an event to
logthe change. Emitting events for state changesis abest practice in Ethereum smart con-
tracts asit provides transparency and allows easy tracking of contract operations.

Recommendation:

Introduce anew event, for example, UsdRateUpdated, and emit this event after updating the

usdRate variable

22

5 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing
methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
used to test mathematical relationships between Solidity instances statically and
variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

23

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

35

6 Conclusion

In this audit, we examined the design and implementation of SHEER contract and discov-
ered several issues of varying severity. Florim Fluri team addressed issues raised in the
initial report and implemented the necessary fixes, while classifying the rest as a risk with
low-probability of occurrence. Blockhat auditors advised Florim Fluri Team to maintain a
high level of vigilance and to keep those findings in mind in order to avoid any future com-
plications.

36

» BLOCKHAT

SECURITY

For a Smart Contract Audit, contact us at contact@blockhat.io

37

mailto:contact@blockhat.io

	Introduction
	About SHEER
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	presale-eth.sol
	Manipulable Sale Period by Owner [CRITICAL]
	Inaccurate Token Availability Check [CRITICAL]
	Missing Address Zero Checks [HIGH]
	Risk of Hardcoding Token Addresses [HIGH]
	Mutable Token Addresses [HIGH]
	Missing Value Check for usdtAmount [HIGH]
	Missing Value Check for usdcAmount [HIGH]
	Unchecked Token Transfer [MEDIUM]
	Missing Allowance Checks [MEDIUM]

	Sheer.sol
	High fee limit for both buy and sell fees [HIGH]
	Use of transfer instead of safeTransfer [MEDIUM]
	Centralization and Owner Privileges [LOW]

	Best Practices
	Lack of Transparency in Token Decimals
	Token Transfer Instead of TransferFrom
	Update State Before External Calls
	Missing Event for setUsdRate

	Static Analysis (Slither)
	Conclusion

