
SHEER

Smart Contract Security Audit

Prepared byBlockHat

October 28th, 2023 -November 3rd, 2023

BlockHat.io

contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client FlorimFluri

Version 0.1

Classification Public

Scope

File Hash

Sheer/presale-eth.sol 49e57cc0f09d4d1ca9e5674d7398aabf

Sheer/SHEER.sol 5813a9fc3be23f76a9c725323be870ed

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

2

mailto:contact@blockhat.io

Contents

1 Introduction 4

1.1 About SHEER . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

A presale-eth.sol . 7

A.1 Manipulable Sale Period byOwner [CRITICAL] 7

A.2 Inaccurate TokenAvailability Check [CRITICAL] 8

A.3 MissingAddress Zero Checks [HIGH] 9

A.4 Risk of Hardcoding TokenAddresses [HIGH] 10

A.5 Mutable TokenAddresses [HIGH] . 11

A.6 Missing Value Check for usdtAmount [HIGH] 12

A.7 Missing Value Check for usdcAmount [HIGH] 14

A.8 Unchecked Token Transfer [MEDIUM] 15

A.9 MissingAllowanceChecks [MEDIUM] 16

B Sheer.sol . 17

B.1 High fee limit for both buy and sell fees [HIGH] 17

B.2 Use of transfer instead of safeTransfer [MEDIUM] 18

B.3 Centralization andOwner Privileges [LOW] 19

4 Best Practices 21

BP.1 Lack of Transparency in TokenDecimals . 21

BP.2 Token Transfer Instead of TransferFrom . 21

BP.3 Update State Before External Calls . 21

BP.4 Missing Event for setUsdRate . 22

5 Static Analysis (Slither) 23

6 Conclusion 36

3

1 Introduction

Florim Fluri engaged BlockHat to conduct a security assessment on the SHEER beginning

onOctober 28th, 2023 and endingNovember 3rd, 2023. In this report, we detail ourmethod-

ical approach to evaluate potential security issues associated with the implementation of

smart contracts, byexposingpossiblesemanticdiscrepanciesbetween thesmart contract

code and design document, and by recommending additional ideas to optimize the existing

code. Our findings indicate that thecurrentversionofsmartcontractscanstill beenhanced

further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About SHEER

Sheer is a utility token of aworksheer platform.

Issuer FlorimFluri

Website https://worksheer.com

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

BlockHat used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

https://worksheer.com

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview

2.1 Summary

The following isasynopsisofourconclusions fromouranalysisof theSHEER implementa-

tion. During the first part of our audit, we examine the smart contract source code and run

the codebase via a static code analyzer. The objective here is to find known coding prob-

lems statically and thenmanually check (reject or confirm) issues highlighted by the tool.

Additionally, we check business logics, system processes, and DeFi-related components

manually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include 2

critical-severity, 6 high-severity, 3medium-severity, 1 low-severity vulnerabilities.

Vulnerabilities Severity Status

Manipulable Sale Period byOwner CRITICAL Fixed

Inaccurate TokenAvailability Check CRITICAL Not Fixed

MissingAddress Zero Checks HIGH Fixed

Risk of Hardcoding TokenAddresses HIGH Fixed

Mutable TokenAddresses HIGH Fixed

Missing Value Check for usdtAmount HIGH Fixed

Missing Value Check for usdcAmount HIGH Fixed

High fee limit for both buy and sell fees HIGH Fixed

Unchecked Token Transfer MEDIUM Not Fixed

MissingAllowanceChecks MEDIUM Fixed

Use of transfer instead of safeTransfer MEDIUM Fixed

Centralization andOwner Privileges LOW Acknowledged

6

3 FindingDetails

A presale-eth.sol

A.1 Manipulable Sale Period byOwner [CRITICAL]

Description:

The current mechanism allows the owner to arbitrarily change the start and end times of

the presale. This introduces unpredictability andmay lead to distrust among participants.

Investors and participants rely on predefined and stable sale periods. Allowing the owner

to change these parameters in themiddle of the sale or just before it begins canharm trust

and even lead to potentialmisuse or front-running.

Code:

Listing 1: presale-eth.sol

242 function setStartTime(uint256 _startTime) external onlyOwner {

243 startTime = _startTime;

244 }

246 function setEndTime(uint256 _endTime) external onlyOwner {

247 endTime = _endTime;

248 }

Risk Level:

Likelihood – 5

Impact - 5

Recommendation:

Implement amechanismwhere the presale starts with a dedicated function like startPre-

sale(),which sets the startTime to the current block timestampandcalculates theendTime

7

based on a predefined period, Once the presale has started, prohibit any changes to its du-

ration or early termination by the owner. By utilizing this approach, the presale becomes

more predictable and transparent, with participants having confidence that the sale dura-

tion cannot bemanipulatedmid-way.

Status - Fixed

A.2 Inaccurate TokenAvailability Check [CRITICAL]

Description:

The contract checks if there are enough tokens in its balance before allowing a purchase.

However, thismethoddoesn’t consider tokens thathavealreadybeenpurchasedbutnotyet

claimed. Without accounting for these unclaimed tokens, the contract might sell more to-

kens than it has available, leading to potential issueswhenusers try to claim their tokens.

Code:

Listing 2: presale-eth.sol

191 require(amountInTokens <= token.balanceOf(address(this)), "Not

↪→ enough tokens available");

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

Introduce a newstate variable, for example, tokensSold, that accumulates the total tokens

sold. Then,modify therequirestatement tocheck that tokensSold+amountInTokens is less

than or equal to the token balance of the contract. This ensures that the contract only sells

tokens that are actually available.

8

Status -Not Fixed

The addition of the tokensSold = tokensSold.add(amountInTokens); line in the

buyTokensWithUSDT function is a fix that ensures the contract doesn’t sell more tokens

than available. However, it appears that the corresponding buyTokensWithUSDC function

has not been updated with a similar line of code. This omission could lead to the same

issue of overselling tokens, as the tokensSold variable won’t accurately reflect the total

number of tokens committed after a USDC transaction. To maintain consistency and

ensure accurate tracking of token sales, the same line should be integrated into the

buyTokensWithUSDC function. This will prevent any potential discrepancies between the

tokens sold and the contract’s balance, thereby safeguarding the integrity of the token sale

process.

A.3 MissingAddress Zero Checks [HIGH]

Description:

The constructor initializes the token, usdtToken, and usdcToken with addresses without

checking if they are the zero address. Using a zero address can render the contract

non-functional.

Code:

Listing 3: presale-eth.sol

166 constructor(address _tokenAddress, address _usdtTokenAddress,

↪→ address _usdcTokenAddress, uint256 _usdPrice, uint256

↪→ _startTime, uint256 _endTime) {

167 token = IERC20(_tokenAddress);

168 usdtToken = IERC20(_usdtTokenAddress);

169 usdcToken = IERC20(_usdcTokenAddress);

170 usdRate = _usdPrice;

171 startTime = _startTime;

172 endTime = _endTime;

173 _transferOwnership(msg.sender);

174 }

9

Risk Level:

Likelihood – 3

Impact - 4

Recommendation:

Always check if provided addresses are not zero and correct before initializing contract

state variables.

Status - Fixed

A.4 Risk of Hardcoding TokenAddresses [HIGH]

Description:

Smart contracts are immutable once deployed. Mistakesmade during deployment cannot

be correctedwithout redeploying the entire contract. In the provided presale contract, the

addresses for token, usdtToken, andusdcTokenareprovidedasparametersduringdeploy-

ment. This introduces a risk: an inadvertent error during deployment (such as copying and

pasting thewrongaddressormakinga typo) canassign thewrongaddress to thesecrucial

variables, leading to amalfunctioning or non-functional contract.

Whendealingwithwell-known tokens likeUSDTandUSDC, their contract addresseson

specific blockchains are fixed andwidely recognized. For instance, on theEthereummain-

net, the address for USDT has been the same since its deployment. Thus, the benefit of dy-

namically setting such addresses is outweighed by the potential risk of human error.

Code:

Listing 4: presale-eth.sol

166 constructor(address _tokenAddress, address _usdtTokenAddress,

↪→ address _usdcTokenAddress, uint256 _usdPrice, uint256

↪→ _startTime, uint256 _endTime) {

167 token = IERC20(_tokenAddress);

168 usdtToken = IERC20(_usdtTokenAddress);

10

169 usdcToken = IERC20(_usdcTokenAddress);

170 usdRate = _usdPrice;

171 startTime = _startTime;

172 endTime = _endTime;

173 _transferOwnership(msg.sender);

174 }

Risk Level:

Likelihood – 3

Impact - 4

Recommendation:

For widely recognized tokens with fixed addresses, it is recommended to hardcode these

addresses directly into the contract.

Status - Fixed

A.5 Mutable TokenAddresses [HIGH]

Description:

The contract allows changing the USDC, USDT and presale token addresses after deploy-

ment. This could lead to potentialmisuse.

Code:

Listing 5: presale-eth.sol

250 function setTokenContract(address newTokenAddress) external

↪→ onlyOwner {

251 require(newTokenAddress != address(0), "Token contract address

↪→ cannot be zero");

252 token = IERC20(newTokenAddress);

253 }

11

255 function setUsdtTokenContract(address newUsdtTokenAddress) external

↪→ onlyOwner {

256 require(newUsdtTokenAddress != address(0), "USDT Token contract

↪→ address cannot be zero");

257 usdtToken = IERC20(newUsdtTokenAddress);

258 }

260 function setUsdcTokenContract(address newUsdcTokenAddress) external

↪→ onlyOwner {

261 require(newUsdcTokenAddress != address(0), "USDC Token contract

↪→ address cannot be zero");

262 usdcToken = IERC20(newUsdcTokenAddress);

263 }

Risk Level:

Likelihood – 4

Impact - 3

Recommendation:

Fix the token addresses and don’t allow changes after contract deployment.

Status - Fixed

A.6 Missing Value Check for usdtAmount [HIGH]

Description:

The function buyTokensWithUSDT does not check whether the passed usdtAmount is

greater than 0. This can allow users to call the function with 0 USDT, which would

unnecessarily consumegaswithout any real transaction.

12

Code:

Listing 6: presale-eth.sol

186 function buyTokensWithUSDT(uint256 usdtAmount) external

↪→ onlyDuringSale {

188 uint256 amountInUsdt = usdtAmount;

189 uint256 amountInTokens = amountInUsdt.mul(usdRate).mul(1e18).div

↪→ (1e6);

191 require(amountInTokens <= token.balanceOf(address(this)), "Not

↪→ enough tokens available");

192 require(usdtToken.transferFrom(msg.sender, owner(), amountInUsdt)

↪→ , "USDT transfer failed");

194 purchasedAmounts[msg.sender] = purchasedAmounts[msg.sender].add(

↪→ amountInTokens);

195 usdRaised = usdRaised.add(amountInUsdt);

196 emit TokensPurchased(msg.sender, amountInTokens);

197 }

Risk Level:

Likelihood – 3

Impact - 4

Recommendation:

Addarequirestatementat thebeginningof the function tocheckthatusdtAmount isgreater

than 0

13

Status - Fixed

A.7 Missing Value Check for usdcAmount [HIGH]

Description:

The function buyTokensWithUSDC does not check whether the passed usdcAmount is

greater than 0. This oversight can allow users to call the function with 0 USDC, leading to

unnecessary gas consumption without any meaningful transaction. Additionally, having

such a check can prevent potential bugs or unintended behaviors.

Code:

Listing 7: presale-eth.sol

199 function buyTokensWithUSDC(uint256 usdcAmount) external

↪→ onlyDuringSale {

201 uint256 amountInUsdc = usdcAmount;

202 uint256 amountInTokens = amountInUsdc.mul(usdRate).mul(1e18).div

↪→ (1e6);

204 require(amountInTokens <= token.balanceOf(address(this)), "Not

↪→ enough tokens available");

205 require(usdcToken.transferFrom(msg.sender, owner(), amountInUsdc)

↪→ , "USDC transfer failed");

207 purchasedAmounts[msg.sender] = purchasedAmounts[msg.sender].add(

↪→ amountInTokens);

208 usdRaised = usdRaised.add(amountInUsdc);

209 emit TokensPurchased(msg.sender, amountInTokens);

210 }

14

Risk Level:

Likelihood – 3

Impact - 4

Recommendation:

Add a require statement at the beginning of the function to check that usdcAmount is

greater than 0

Status - Fixed

A.8 Unchecked Token Transfer [MEDIUM]

Description:

In the claimTokens function, the transfer method is used without checking its return value

or without using a safer version like safeTransfer. The plain transfer method of the ERC20

standardcanfailsilentlywithoutrevertingthetransaction, leadingtopotential lossof funds

or unintended behaviors.

Code:

Listing 8: presale-eth.sol

212 function claimTokens() external onlyAfterSale {

213 require(!hasClaimed[msg.sender], "Tokens have already been

↪→ claimed");

215 uint256 claimableAmount = purchasedAmounts[msg.sender];

216 require(claimableAmount > 0, "No tokens to claim");

218 token.transfer(msg.sender, claimableAmount);

219 hasClaimed[msg.sender] = true;

221 emit TokensClaimed(msg.sender, claimableAmount);

15

222 }

Risk Level:

Likelihood – 3

Impact - 4

Recommendation:

Replace the transfercallwitharequirestatement that checks thereturnvalueof the trans-

fer, orpreferably, useasafeTransfer function fromalibrary likeOpenZeppelin’sSafeERC20.

Here’s how you canmodify it with a require check

Status -Not Fixed

SafeERC20.safeTransfer fromtheOpenZeppelin library,whichalready includeschecksand

error handling to ensure the safety of token transfers. Unlike the basic transfer method

in the ERC20 standard that may fail silently, safeTransfer will revert the transaction if the

transfer fails. Therefore, theadditional requirestatement tocheck the returnvalueof safe-

Transfer is unnecessary, as safeTransferwill throwanerror and revert thewhole transac-

tion if the transfer is unsuccessful. This is a redundancy that canbe removed to simplify the

codewithout compromising on security or functionality.

A.9 MissingAllowanceChecks [MEDIUM]

Description:

Before transferring tokens using transferFrom, it’s important to check if the contract has

the required allowances. Without this check, the transfer can fail.

Code:

Listing 9: presale-eth.sol

192 require(usdtToken.transferFrom(msg.sender, owner(), amountInUsdt), "USDT

↪→ transfer failed");

16

Listing 10: presale-eth.sol

205 require(usdcToken.transferFrom(msg.sender, owner(), amountInUsdc)

↪→ , "USDC transfer failed");

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Always check for sufficient allowances before transferring tokens.

Status - Fixed

B Sheer.sol

B.1 High fee limit for both buy and sell fees [HIGH]

Description:

The updateBuyFees and updateSellFees functions both have a condition where the total

combined fees (for buy and sell) must be kept at 50% or less. A 50% fee is a substantial

amount andmight be seen as excessive or unfair by users or investors.

Code:

Listing 11: Sheer.sol

663 function updateBuyFees(uint256 _marketingFee, uint256 _liquidityFee)

↪→ external onlyOwner {

664 liquidityFeeOnBuy = _marketingFee;

665 marketingFeeOnBuy = _liquidityFee;

666 _totalFeesOnBuy = liquidityFeeOnBuy + marketingFeeOnBuy;

667 require(_totalFeesOnBuy <= 50, "Must keep fees at 50% or less");

17

668 }

670 function updateSellFees(uint256 _marketingFee, uint256 _liquidityFee

↪→) external onlyOwner {

671 liquidityFeeOnSell = _marketingFee;

672 marketingFeeOnSell = _liquidityFee;

673 _totalFeesOnSell = liquidityFeeOnSell + marketingFeeOnSell;

674 require(_totalFeesOnSell <= 50, "Must keep fees at 50% or less");

675 }

Risk Level:

Likelihood – 5

Impact - 5

Recommendation:

It’s advisable to reconsider the fee structure and potentially reduce the upper limit. Ensure

that the fee structure is transparent to users and justified for the utility it provides.

Status - Fixed

B.2 Use of transfer instead of safeTransfer [MEDIUM]

Description:

The transfermethod can silently fail without reverting the transaction, leading to potential

loss of funds or unintended behavior.

Code:

Listing 12: Sheer.sol

631 function claimStuckTokens(address token) external onlyOwner {

632 require(token != address(this), "Owner cannot claim contract's

↪→ balance of its own tokens");

18

633 if (token == address(0x0)) {

634 payable(msg.sender).sendValue(address(this).balance);

635 return;

636 }

637 IERC20 ERC20token = IERC20(token);

638 uint256 balance = ERC20token.balanceOf(address(this));

639 ERC20token.transfer(msg.sender, balance);

640 }

Risk Level:

Likelihood – 3

Impact - 4

Recommendation:

Replace transfer with safeTransfer from a reputable library like OpenZeppelin to ensure

transaction reverts on failure.

Status - Fixed

B.3 Centralization andOwner Privileges [LOW]

Description:

The smart contract contains several functions that can only be called by the owner, provid-

ing a high degree of centralization. For instance, the owner can:

• Enable or disable token trading

• Change fees

• Exclude accounts from fees

• Claim stuck tokens

• Updatemax transaction amount andwallet amount

• Andmore...

19

Risk Level:

Likelihood – 2

Impact - 2

Recommendation:

Consider introducing decentralized governance or more transparent measures to reduce

the trust required by holders in the owner.

Status -Acknowledged

20

4 Best Practices

BP.1 Lack of Transparency in TokenDecimals

Description:

For transparency, it’s recommended to use the token’s own decimals function instead of

hardcoding values.

Recommendation:

Use the decimals function from the token contract to determine the token’s precision.

BP.2 Token Transfer Instead of TransferFrom

Description:

It’s safer to use transferFrom instead of transfer to move tokens from the contract to

users.

Recommendation:

Use transferFrom to transfer tokens to users.

BP.3 Update State Before External Calls

Description:

For safety, state variables should be updated beforemaking external calls.

Recommendation:

Update state variables beforemaking any external calls.

21

BP.4 Missing Event for setUsdRate

Description:

The setUsdRate function updates the usdRate state variable but does not emit an event to

log thechange. Emittingevents forstatechanges isabestpractice inEthereumsmart con-

tracts as it provides transparency and allows easy tracking of contract operations.

Recommendation:

Introduceanewevent, forexample,UsdRateUpdated, andemit thiseventafterupdating the

usdRate variable

22

5 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing

methodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

used to test mathematical relationships between Solidity instances statically and

variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

INFO:Detectors:

Reentrancy in SHEER._transfer(address,address,uint256) (SHEER.sol

↪→ #695-777):

External calls:

- swapAndLiquify(liquidityTokens) (SHEER.sol#750)

- uniswapV2Router.

↪→ swapExactTokensForETHSupportingFeeOnTransferTokens(

↪→ half,0,path,address(this),block.timestamp) (SHEER.

↪→ sol#816-821)

- uniswapV2Router.addLiquidityETH{value: newBalance}(

↪→ address(this),otherHalf,0,0,address(0xdead),block.

↪→ timestamp) (SHEER.sol#825-832)

- swapAndSendMarketing(marketingTokens) (SHEER.sol#755)

- (success) = recipient.call{value: amount}() (SHEER.sol

↪→ #234)

- uniswapV2Router.

↪→ swapExactTokensForETHSupportingFeeOnTransferTokens(

↪→ tokenAmount,0,path,address(this),block.timestamp) (

↪→ SHEER.sol#844-849)

- address(marketingWallet).sendValue(newBalance) (SHEER.

↪→ sol#853)

23

External calls sending eth:

- swapAndLiquify(liquidityTokens) (SHEER.sol#750)

- uniswapV2Router.addLiquidityETH{value: newBalance}(

↪→ address(this),otherHalf,0,0,address(0xdead),block.

↪→ timestamp) (SHEER.sol#825-832)

- swapAndSendMarketing(marketingTokens) (SHEER.sol#755)

- (success) = recipient.call{value: amount}() (SHEER.sol

↪→ #234)

State variables written after the call(s):

- super._transfer(from,address(this),fees) (SHEER.sol#773)

- _balances[sender] = senderBalance - amount (SHEER.sol

↪→ #478)

- _balances[recipient] += amount (SHEER.sol#480)

ERC20._balances (SHEER.sol#384) can be used in cross function

↪→ reentrancies:

- ERC20._mint(address,uint256) (SHEER.sol#487-497)

- ERC20._transfer(address,address,uint256) (SHEER.sol#465-485)

- ERC20.balanceOf(address) (SHEER.sol#414-416)

- super._transfer(from,to,amount) (SHEER.sol#776)

- _balances[sender] = senderBalance - amount (SHEER.sol

↪→ #478)

- _balances[recipient] += amount (SHEER.sol#480)

ERC20._balances (SHEER.sol#384) can be used in cross function

↪→ reentrancies:

- ERC20._mint(address,uint256) (SHEER.sol#487-497)

- ERC20._transfer(address,address,uint256) (SHEER.sol#465-485)

- ERC20.balanceOf(address) (SHEER.sol#414-416)

- swapping = false (SHEER.sol#758)

SHEER.swapping (SHEER.sol#569) can be used in cross function

↪→ reentrancies:

- SHEER._transfer(address,address,uint256) (SHEER.sol#695-777)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #reentrancy-vulnerabilities

INFO:Detectors:

24

SHEER.claimStuckTokens(address) (SHEER.sol#631-640) ignores return value

↪→ by ERC20token.transfer(msg.sender,balance) (SHEER.sol#639)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #unchecked-transfer

INFO:Detectors:

SHEER._transfer(address,address,uint256)._totalFees (SHEER.sol#761) is a

↪→ local variable never initialized

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #uninitialized-local-variables

INFO:Detectors:

SHEER.swapAndLiquify(uint256) (SHEER.sol#806-835) ignores return value

↪→ by uniswapV2Router.addLiquidityETH{value: newBalance}(address(

↪→ this),otherHalf,0,0,address(0xdead),block.timestamp) (SHEER.sol

↪→ #825-832)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #unused-return

INFO:Detectors:

SHEER.updateBuyFees(uint256,uint256) (SHEER.sol#663-668) should emit an

↪→ event for:

- liquidityFeeOnBuy = _marketingFee (SHEER.sol#664)

- marketingFeeOnBuy = _liquidityFee (SHEER.sol#665)

- _totalFeesOnBuy = liquidityFeeOnBuy + marketingFeeOnBuy (SHEER.

↪→ sol#666)

SHEER.updateSellFees(uint256,uint256) (SHEER.sol#670-675) should emit an

↪→ event for:

- liquidityFeeOnSell = _marketingFee (SHEER.sol#671)

- marketingFeeOnSell = _liquidityFee (SHEER.sol#672)

- _totalFeesOnSell = liquidityFeeOnSell + marketingFeeOnSell (

↪→ SHEER.sol#673)

SHEER.updateMaxTxnAmount(uint256) (SHEER.sol#792-795) should emit an

↪→ event for:

- maxTransactionAmount = newAmount (SHEER.sol#794)

SHEER.updateMaxWalletAmount(uint256) (SHEER.sol#797-800) should emit an

↪→ event for:

25

- maxWallet = newAmount (SHEER.sol#799)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #missing-events-arithmetic

INFO:Detectors:

Reentrancy in SHEER._transfer(address,address,uint256) (SHEER.sol

↪→ #695-777):

External calls:

- swapAndLiquify(liquidityTokens) (SHEER.sol#750)

- uniswapV2Router.

↪→ swapExactTokensForETHSupportingFeeOnTransferTokens(

↪→ half,0,path,address(this),block.timestamp) (SHEER.

↪→ sol#816-821)

- uniswapV2Router.addLiquidityETH{value: newBalance}(

↪→ address(this),otherHalf,0,0,address(0xdead),block.

↪→ timestamp) (SHEER.sol#825-832)

- swapAndSendMarketing(marketingTokens) (SHEER.sol#755)

- (success) = recipient.call{value: amount}() (SHEER.sol

↪→ #234)

- uniswapV2Router.

↪→ swapExactTokensForETHSupportingFeeOnTransferTokens(

↪→ tokenAmount,0,path,address(this),block.timestamp) (

↪→ SHEER.sol#844-849)

- address(marketingWallet).sendValue(newBalance) (SHEER.

↪→ sol#853)

External calls sending eth:

- swapAndLiquify(liquidityTokens) (SHEER.sol#750)

- uniswapV2Router.addLiquidityETH{value: newBalance}(

↪→ address(this),otherHalf,0,0,address(0xdead),block.

↪→ timestamp) (SHEER.sol#825-832)

- swapAndSendMarketing(marketingTokens) (SHEER.sol#755)

- (success) = recipient.call{value: amount}() (SHEER.sol

↪→ #234)

Event emitted after the call(s):

- SwapAndSendMarketing(tokenAmount,newBalance) (SHEER.sol#855)

26

- swapAndSendMarketing(marketingTokens) (SHEER.sol#755)

- Transfer(sender,recipient,amount) (SHEER.sol#482)

- super._transfer(from,address(this),fees) (SHEER.sol#773)

- Transfer(sender,recipient,amount) (SHEER.sol#482)

- super._transfer(from,to,amount) (SHEER.sol#776)

Reentrancy in SHEER.swapAndLiquify(uint256) (SHEER.sol#806-835):

External calls:

- uniswapV2Router.

↪→ swapExactTokensForETHSupportingFeeOnTransferTokens(half,0,

↪→ path,address(this),block.timestamp) (SHEER.sol#816-821)

- uniswapV2Router.addLiquidityETH{value: newBalance}(address(this

↪→),otherHalf,0,0,address(0xdead),block.timestamp) (SHEER.

↪→ sol#825-832)

External calls sending eth:

- uniswapV2Router.addLiquidityETH{value: newBalance}(address(this

↪→),otherHalf,0,0,address(0xdead),block.timestamp) (SHEER.

↪→ sol#825-832)

Event emitted after the call(s):

- SwapAndLiquify(half,newBalance,otherHalf) (SHEER.sol#834)

Reentrancy in SHEER.swapAndSendMarketing(uint256) (SHEER.sol#837-856):

External calls:

- uniswapV2Router.

↪→ swapExactTokensForETHSupportingFeeOnTransferTokens(

↪→ tokenAmount,0,path,address(this),block.timestamp) (SHEER.

↪→ sol#844-849)

- address(marketingWallet).sendValue(newBalance) (SHEER.sol#853)

Event emitted after the call(s):

- SwapAndSendMarketing(tokenAmount,newBalance) (SHEER.sol#855)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #reentrancy-vulnerabilities-3

INFO:Detectors:

Address._revert(bytes,string) (SHEER.sol#325-337) uses assembly

- INLINE ASM (SHEER.sol#330-333)

27

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #assembly-usage

INFO:Detectors:

SHEER._transfer(address,address,uint256) (SHEER.sol#695-777) has a high

↪→ cyclomatic complexity (13).

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #cyclomatic-complexity

INFO:Detectors:

Address._revert(bytes,string) (SHEER.sol#325-337) is never used and

↪→ should be removed

Address.functionCall(address,bytes) (SHEER.sol#238-240) is never used

↪→ and should be removed

Address.functionCall(address,bytes,string) (SHEER.sol#242-248) is never

↪→ used and should be removed

Address.functionCallWithValue(address,bytes,uint256) (SHEER.sol#250-256)

↪→ is never used and should be removed

Address.functionCallWithValue(address,bytes,uint256,string) (SHEER.sol

↪→ #258-267) is never used and should be removed

Address.functionDelegateCall(address,bytes) (SHEER.sol#282-284) is never

↪→ used and should be removed

Address.functionDelegateCall(address,bytes,string) (SHEER.sol#286-293)

↪→ is never used and should be removed

Address.functionStaticCall(address,bytes) (SHEER.sol#269-271) is never

↪→ used and should be removed

Address.functionStaticCall(address,bytes,string) (SHEER.sol#273-280) is

↪→ never used and should be removed

Address.isContract(address) (SHEER.sol#227-229) is never used and should

↪→ be removed

Address.verifyCallResult(bool,bytes,string) (SHEER.sol#313-323) is never

↪→ used and should be removed

Address.verifyCallResultFromTarget(address,bool,bytes,string) (SHEER.sol

↪→ #295-311) is never used and should be removed

Context._msgData() (SHEER.sol#345-348) is never used and should be

↪→ removed

28

ERC20._burn(address,uint256) (SHEER.sol#499-514) is never used and

↪→ should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #dead-code

INFO:Detectors:

Low level call in Address.sendValue(address,uint256) (SHEER.sol#231-236)

↪→ :

- (success) = recipient.call{value: amount}() (SHEER.sol#234)

Low level call in Address.functionCallWithValue(address,bytes,uint256,

↪→ string) (SHEER.sol#258-267):

- (success,returndata) = target.call{value: value}(data) (SHEER.

↪→ sol#265)

Low level call in Address.functionStaticCall(address,bytes,string) (

↪→ SHEER.sol#273-280):

- (success,returndata) = target.staticcall(data) (SHEER.sol#278)

Low level call in Address.functionDelegateCall(address,bytes,string) (

↪→ SHEER.sol#286-293):

- (success,returndata) = target.delegatecall(data) (SHEER.sol

↪→ #291)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #low-level-calls

INFO:Detectors:

Function IUniswapV2Pair.DOMAIN_SEPARATOR() (SHEER.sol#33) is not in

↪→ mixedCase

Function IUniswapV2Pair.PERMIT_TYPEHASH() (SHEER.sol#34) is not in

↪→ mixedCase

Function IUniswapV2Pair.MINIMUM_LIQUIDITY() (SHEER.sol#51) is not in

↪→ mixedCase

Function IUniswapV2Router01.WETH() (SHEER.sol#71) is not in mixedCase

Parameter SHEER.changeMarketingWallet(address)._marketingWallet (SHEER.

↪→ sol#655) is not in mixedCase

Parameter SHEER.updateBuyFees(uint256,uint256)._marketingFee (SHEER.sol

↪→ #663) is not in mixedCase

29

Parameter SHEER.updateBuyFees(uint256,uint256)._liquidityFee (SHEER.sol

↪→ #663) is not in mixedCase

Parameter SHEER.updateSellFees(uint256,uint256)._marketingFee (SHEER.sol

↪→ #670) is not in mixedCase

Parameter SHEER.updateSellFees(uint256,uint256)._liquidityFee (SHEER.sol

↪→ #670) is not in mixedCase

Parameter SHEER.setSwapEnabled(bool)._enabled (SHEER.sol#781) is not in

↪→ mixedCase

Variable SHEER._isExcludedMaxTransactionAmount (SHEER.sol#549) is not in

↪→ mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #conformance-to-solidity-naming-conventions

INFO:Detectors:

Redundant expression "this (SHEER.sol#346)" inContext (SHEER.sol

↪→ #340-349)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #redundant-statements

INFO:Detectors:

Variable IUniswapV2Router01.addLiquidity(address,address,uint256,uint256

↪→ ,uint256,uint256,address,uint256).amountADesired (SHEER.sol#76)

↪→ is too similar to IUniswapV2Router01.addLiquidity(address,address

↪→ ,uint256,uint256,uint256,uint256,address,uint256).amountBDesired

↪→ (SHEER.sol#77)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #variable-names-too-similar

INFO:Detectors:

SHEER.constructor() (SHEER.sol#583-625) uses literals with too many

↪→ digits:

- _mint(owner(),200000000000e18) (SHEER.sol#617)

SHEER.setSwapTokensAtAmount(uint256) (SHEER.sol#786-790) uses literals

↪→ with too many digits:

- require(bool,string)(newAmount > totalSupply() / 1000000,

↪→ SwapTokensAtAmount must be greater than 0.0001% of total

↪→ supply) (SHEER.sol#787)

30

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #too-many-digits

INFO:Detectors:

SHEER.uniswapV2Pair (SHEER.sol#545) should be immutable

SHEER.uniswapV2Router (SHEER.sol#544) should be immutable

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #state-variables-that-could-be-declared-immutable

INFO:Detectors:

Presale.claimTokens() (presale-eth.sol#212-222) ignores return value by

↪→ token.transfer(msg.sender,claimableAmount) (presale-eth.sol#218)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #unchecked-transfer

INFO:Detectors:

Reentrancy in Presale.claimTokens() (presale-eth.sol#212-222):

External calls:

- token.transfer(msg.sender,claimableAmount) (presale-eth.sol

↪→ #218)

State variables written after the call(s):

- hasClaimed[msg.sender] = true (presale-eth.sol#219)

Presale.hasClaimed (presale-eth.sol#160) can be used in cross

↪→ function reentrancies:

- Presale.canClaimTokens(address) (presale-eth.sol#233-235)

- Presale.claimTokens() (presale-eth.sol#212-222)

- Presale.getClaimableTokens(address) (presale-eth.sol#225-231)

- Presale.hasClaimed (presale-eth.sol#160)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #reentrancy-vulnerabilities-1

INFO:Detectors:

Presale.setUsdRate(uint256) (presale-eth.sol#237-240) should emit an

↪→ event for:

- usdRate = newUsdRate (presale-eth.sol#239)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #missing-events-arithmetic

INFO:Detectors:

31

Reentrancy in Presale.buyTokensWithUSDC(uint256) (presale-eth.sol

↪→ #199-210):

External calls:

- require(bool,string)(usdcToken.transferFrom(msg.sender,owner(),

↪→ amountInUsdc),USDC transfer failed) (presale-eth.sol#205)

State variables written after the call(s):

- purchasedAmounts[msg.sender] = purchasedAmounts[msg.sender].add

↪→ (amountInTokens) (presale-eth.sol#207)

- usdRaised = usdRaised.add(amountInUsdc) (presale-eth.sol#208)

Reentrancy in Presale.buyTokensWithUSDT(uint256) (presale-eth.sol

↪→ #186-197):

External calls:

- require(bool,string)(usdtToken.transferFrom(msg.sender,owner(),

↪→ amountInUsdt),USDT transfer failed) (presale-eth.sol#192)

State variables written after the call(s):

- purchasedAmounts[msg.sender] = purchasedAmounts[msg.sender].add

↪→ (amountInTokens) (presale-eth.sol#194)

- usdRaised = usdRaised.add(amountInUsdt) (presale-eth.sol#195)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #reentrancy-vulnerabilities-2

INFO:Detectors:

Reentrancy in Presale.buyTokensWithUSDC(uint256) (presale-eth.sol

↪→ #199-210):

External calls:

- require(bool,string)(usdcToken.transferFrom(msg.sender,owner(),

↪→ amountInUsdc),USDC transfer failed) (presale-eth.sol#205)

Event emitted after the call(s):

- TokensPurchased(msg.sender,amountInTokens) (presale-eth.sol

↪→ #209)

Reentrancy in Presale.buyTokensWithUSDT(uint256) (presale-eth.sol

↪→ #186-197):

External calls:

- require(bool,string)(usdtToken.transferFrom(msg.sender,owner(),

↪→ amountInUsdt),USDT transfer failed) (presale-eth.sol#192)

32

Event emitted after the call(s):

- TokensPurchased(msg.sender,amountInTokens) (presale-eth.sol

↪→ #196)

Reentrancy in Presale.claimTokens() (presale-eth.sol#212-222):

External calls:

- token.transfer(msg.sender,claimableAmount) (presale-eth.sol

↪→ #218)

Event emitted after the call(s):

- TokensClaimed(msg.sender,claimableAmount) (presale-eth.sol#221)

Reentrancy in Presale.recoverWrongTokens(address) (presale-eth.sol

↪→ #271-279):

External calls:

- require(bool,string)(wrongToken.transfer(owner(),balance),Token

↪→ recovery failed) (presale-eth.sol#276)

Event emitted after the call(s):

- TokensRecovered(msg.sender,_tokenAddress,balance) (presale-eth.

↪→ sol#278)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #reentrancy-vulnerabilities-3

INFO:Detectors:

Context._msgData() (presale-eth.sol#91-93) is never used and should be

↪→ removed

SafeMath.div(uint256,uint256,string) (presale-eth.sol#71-76) is never

↪→ used and should be removed

SafeMath.mod(uint256,uint256) (presale-eth.sol#60-62) is never used and

↪→ should be removed

SafeMath.mod(uint256,uint256,string) (presale-eth.sol#78-83) is never

↪→ used and should be removed

SafeMath.sub(uint256,uint256) (presale-eth.sol#48-50) is never used and

↪→ should be removed

SafeMath.sub(uint256,uint256,string) (presale-eth.sol#64-69) is never

↪→ used and should be removed

SafeMath.tryAdd(uint256,uint256) (presale-eth.sol#6-12) is never used

↪→ and should be removed

33

SafeMath.tryDiv(uint256,uint256) (presale-eth.sol#30-35) is never used

↪→ and should be removed

SafeMath.tryMod(uint256,uint256) (presale-eth.sol#37-42) is never used

↪→ and should be removed

SafeMath.tryMul(uint256,uint256) (presale-eth.sol#21-28) is never used

↪→ and should be removed

SafeMath.trySub(uint256,uint256) (presale-eth.sol#14-19) is never used

↪→ and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #dead-code

INFO:Detectors:

Low level call in Presale.withdrawFunds() (presale-eth.sol#265-269):

- (success) = address(msg.sender).call{value: ethBalance}() (

↪→ presale-eth.sol#267)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #low-level-calls

INFO:Detectors:

Parameter Presale.setStartTime(uint256)._startTime (presale-eth.sol#242)

↪→ is not in mixedCase

Parameter Presale.setEndTime(uint256)._endTime (presale-eth.sol#246) is

↪→ not in mixedCase

Parameter Presale.recoverWrongTokens(address)._tokenAddress (presale-eth

↪→ .sol#271) is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #conformance-to-solidity-naming-conventions

INFO:Detectors:

Variable Presale.constructor(address,address,address,uint256,uint256,

↪→ uint256)._usdcTokenAddress (presale-eth.sol#166) is too similar

↪→ to Presale.constructor(address,address,address,uint256,uint256,

↪→ uint256)._usdtTokenAddress (presale-eth.sol#166)

Variable Presale.buyTokensWithUSDC(uint256).amountInUsdc (presale-eth.

↪→ sol#201) is too similar to Presale.buyTokensWithUSDT(uint256).

↪→ amountInUsdt (presale-eth.sol#188)

34

Variable Presale.setUsdcTokenContract(address).newUsdcTokenAddress (

↪→ presale-eth.sol#260) is too similar to Presale.

↪→ setUsdtTokenContract(address).newUsdtTokenAddress (presale-eth.

↪→ sol#255)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #variable-names-too-similar

INFO:Slither:. analyzed (16 contracts with 85 detectors), 75 result(s)

↪→ found

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

35

6 Conclusion

In this audit, we examined the design and implementation of SHEER contract and discov-

ered several issues of varying severity. Florim Fluri team addressed issues raised in the

initial report and implemented the necessary fixes, while classifying the rest as a riskwith

low-probability of occurrence. Blockhat auditors advised Florim Fluri Team to maintain a

high level of vigilance and to keep those findings in mind in order to avoid any future com-

plications.

36

For a Smart Contract Audit, contact us at contact@blockhat.io

37

mailto:contact@blockhat.io

	Introduction
	About SHEER
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	presale-eth.sol
	Manipulable Sale Period by Owner [CRITICAL]
	Inaccurate Token Availability Check [CRITICAL]
	Missing Address Zero Checks [HIGH]
	Risk of Hardcoding Token Addresses [HIGH]
	Mutable Token Addresses [HIGH]
	Missing Value Check for usdtAmount [HIGH]
	Missing Value Check for usdcAmount [HIGH]
	Unchecked Token Transfer [MEDIUM]
	Missing Allowance Checks [MEDIUM]

	Sheer.sol
	High fee limit for both buy and sell fees [HIGH]
	Use of transfer instead of safeTransfer [MEDIUM]
	Centralization and Owner Privileges [LOW]

	Best Practices
	Lack of Transparency in Token Decimals
	Token Transfer Instead of TransferFrom
	Update State Before External Calls
	Missing Event for setUsdRate

	Static Analysis (Slither)
	Conclusion

