» BLOCKHAT

SECURITY

Smart Staking

Smart Contract Security Audit

Prepared by BlockHat
October 20", 2023 - September 23™, 2023
BlockHat.io
contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client $MART

Version 1.0

Classification Public
Scope

Link Address

https://bscscan.com/address/0xb2c4a53CACOC
58559127a7525a7C55DC98431F52#code

Oxb2c4a53CAC0C58559127a7525a7C55DC98431F52

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

mailto:contact@blockhat.io

Contents

1 Introduction
11 AboutSmartStaking
1.2 Approach &Methodology
121 RiskMethodology

2 Findings Overview
21 SUMMArY . . . e
22 KeyFindings e

3 Finding Details

A smartstaking.sol
Al Division By Zero_
A2 Incorrect Token Distribution Logic in swapAndSendToFee
Function[[HIGH]
A3 CentralizedriskinaddLiquidity [HIGH}
A.4 Non-Withdrawable BNB: swapAndLiquify function {[HIGH]
A5 Missing Value Check for swapTokensAtAmount [[HIGH]
Ab Missing Zero Address Check [MEDIUM]
A7 Missing Value Checks [MEDIUM]
A.8 Useof.transferinsteadofcall [MEDIUM]
A.9 Centralization Risk:blacklistAddress Function [MEDIUM]

A.10 Missing Balance Check Before Dividend Withdrawal [MEDIUM]
A1 Potential Sandwich Attacks [MEDIUM]
A12 Inefficient Use of success Boolean and Redundant State
Modificationsin withdrawDividendOfUser Function-
A13 Misleading Function Name setBUSDRewardsFee-
A4 Blocking Transfers [INFORMATIONAL]

4 Static Analysis (Slither)

5 Conclusion

o~ o &~ &

1 Introduction

$MART engaged BlockHat to conduct a security assessment on the Smart Staking begin-
ning on October 20", 2023 and ending September 23", 2023. In this report, we detail our
methodical approach to evaluate potential security issues associated with the implemen-
tation of smart contracts, by exposing possible semantic discrepancies between the smart
contract code and design document, and by recommending additionalideas to optimize the
existing code. Our findings indicate that the current version of smart contracts can still be
enhanced further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About Smart Staking

Core Features and Vision Transactional Dynamics of the $MART Token Every interaction
with the $MART token is crafted to cultivate an ecosystem of sustainability and rewards.
Each buy or sell transaction is accompanied by a 10% fee, strategically distributed to foster
growth, reward holders, and ensure longevity:

- Redistributionin BUSD: 4%

- Towards Project Development: 2%
- For Marketing: 2%

- Liquidity Addition: 1%

- Token Burn 1%

- symbol: $MART

Issuer $MART

Website https://smartstaking.io/
Type Solidity Smart Contract
Audit Method Whitebox

https://smartstaking.io/

1.2 Approach & Methodology

BlockHat used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

1.21 Risk Methodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

‘6 High
g Medium
— Low Medium
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Smart Staking im-
plementation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include 1
critical-severity, high-severity, medium-severity, low-severity,

informational-severity vulnerabilities.

Vulnerabilities Severity Status

Division By Zero - B
Incorrect Token Distribution Logic in swapAnd- HIGH Fixed

SendToFee Function

Centralized risk in addLiquidity HIGH Fixed

Non-Withdrawable BNB: swapAndLiquify function HIGH Fixed

Missing Value Check for swapTokensAtAmount HIGH Fixed

Missing Zero Address Check MEDIUM Fixed

Missing Value Checks MEDIUM Fixed

Use of .transfer instead of call MEDIUM Fixed

Centralization Risk:blacklistAddress Function MEDIUM Fixed

Missing Balance Check Before Dividend Withdrawal MEDIUM Acknowledged

Potential Sandwich Attacks MEDIUM Acknowledged

Inefficient Use of success Boolean and Redundant

Fixed
State Modifications in _withdrawDividendOfUser
Function
Misleading Function Name setBUSDRewardsFee Fixed
Blocking Transfers Fixed

3 Finding Details

A smartstaking.sol

A1 Division By Zero [[SRINSEE]

Description:

If totalFees is zero, the calculations within the function, specifically
contractTokenBalance.mul(marketingFee).div(totalFees) and the division operations in
swapAndSendToFee, will throw due to a division-by-zero error. This will result in the
failure of all transfers, essentially freezing all token operations.

Code:

Risk Level:

Likelihood - 4
Impact - 4

~O

Recommendation:

Implement a condition to checkif totalFees is greater than zero.

Status - Fixed

A.2 Incorrect Token Distribution Logicin swapAndSendToFee
Function |[HIGH]

Description:

The token distribution logic for various fees, including marketing, buyback, and liquidity
fees. The primary function _transfer determines how many tokens should be allocated for
each fee category based on the contractTokenBalance and the specific fee percentages.
The tokens are then processed via the swapAndSendToFee and swapAndLiquify functions.
The core vulnerability lies within the swapAndSendToFee function, which seems to
miscalculate the distribution of Ether (obtained by swapping the tokens) between the
marketing and development (dev) wallets. The logic employed to determine the amount of
Ether to send to the marketing and dev wallets does not align with the way the tokens are
initially distributed for these fees.

Code:

Listing 3: smartstaking.sol

1614 function swapAndSendToFee(uint256 tokens) private {

1616 uint256 initialBalance = address(this).balance;

1618 swapTokensForEth(tokens) ;

1619 uint256 newBalance = address(this) .balance.sub(initialBalance);
1620 uint256 marketingAmount = newBalance.div(totalFees.mul(

— marketingFee)) ;
1621 uint256 devWalletAmount = newBalance.div(totalFees.sub(

— marketingFee) .mul(devFee));

1622 if (marketingAmount > 0) {
1623 _marketingWalletAddress.transfer(marketingAmount) ;
1624 }

1

1626 if (devWalletAmount > 0) {
1627 _devWalletAddress.transfer(devWalletAmount) ;

1628 }

1631 }

Risk Level:

Likelihood - 4
Impact - 4

Recommendation:

Redefine the Ether distribution logicin swapAndSendToFee to directly correspond with the
token distribution proportions. A clearer method would be to use the token proportions di-

rectly to distribute the Ether.

Status - Fixed

A.3 Centralizedriskin addLiquidity [HIGH]

Description:

The addLiquidity function calls the uniswapV2Router.addLiquidityETH function with the to
address specified as owner() for acquiring the generated LP tokens from the pool. Asare-
sult, over time the _owner address will accumulate a significant portion of LP tokens. If the
_owneris an EOA (Externally Owned Account), mishandling of its private key can have dev-

astating consequences to the project as a whole

Code:

Listing 4: smartstaking.sol

1697 function addLiquidity(uint256 tokenAmount, uint256 ethAmount)
— private {

12

Risk Level:

Likelihood - 2
Impact - 4

Recommendation:

We recommend updating the uniswapV2Router.addLiquidityETH function to replace its ad-
dress with the contract’s address, using address(this). This modification ensures that LP
tokens are managed within the contract’s logic, providing an added layer of security against
theftin case the _owner account gets compromised.

For broader security enhancements, it's crucial to strengthen centralized privileges or
roles in the protocol. This can be achieved through decentralized mechanisms or by uti-
lizing smart-contract based accounts that adhere to advanced security practices, such as
multisignature wallets.

Tofurther bolster security and mitigate potentialrisks, consider the following solutions:

1. Implementing atime-lock mechanism with areasonable latency, such as 48 hours, to
provide awareness of any privileged operations.

13

2. Assigning critical roles to multisignature wallets, which prevents vulnerabilities as-
sociated with a single private key compromise.

3. Introducing modules like DAO, governance, or voting to enhance transparency and
foster active participation from users.

Status - Fixed

A.4 Non-Withdrawable BNB: swapAndLiquify
function [HIGH]

Description:

The swapAndLiquify function converts half of the contractTokenBalance tokens to BNB.
The other half of tokens and part of the converted BNB are deposited into the pool on
pancakeswap as liquidity. For every swapAndLiquify function call, a smal amount of BNB
leftover in the contract. This is because the price of token drops after swapping the first
half of tokens into BNBs, and the other half of tokens require less than the converted BNB
to be paired with it when adding liquidity. The contract doesn’t appear to provide a way to
withdraw those BNB, and they wil be locked in the contract forever

Risk Level:

Likelihood -2
Impact - 4

Recommendation:

It's not ideal that more and more BNB are locked into the contract over time. The simplest
solutionis to add a function in the contract to withdraw BNB. Other approaches that benefit
the token holders can be:

- Distribute BNB to token holders proportional to the amount of token they hold.

- Use leftover BNB to buy back tokens from the market to increase the price of token

14

Status - Fixed

A.5 Missing Value Check for swapTokensAtAmount [HIGH]

Description:

The function swaptokenchange allows the contract owner to change the swapTokensAtA-
mount variable without any checks for validity or bounds. Depending on what swapToken-
sAtAmountisusedforinthe contract, this could potentially be asignificantissue, especially
ifincorrect or malicious values could disrupt the contract’s functionality or exposeitto vul-
nerabilities.

Code:

Listing 5: smartstaking.sol

1404 function swaptokenchange(uint256 newSwapAmount) external onlyOwner{
1406 swapTokensAtAmount = newSwapAmount;

1407 }

Risk Level:

Likelihood - 4

Impact -3

Recommendation:

Implement checks to ensure that newSwapAmount falls within reasonable bounds. What
“reasonable” means would depend on the specific use-case for this variable in the con-
tract.

15

Status - Not Fixed

A.6 Missing Zero Address Check_

Description:

The setAutomatedMarketMakerPair functiondoes not containazero-addresscheckforthe
pair parameter. This could potentially lead to bugs or misuse of the contract, especially
when considering that this function is modifiable only by the owner.

Code:

Risk Level:

Likelihood - 3
Impact -3

Recommendation:

Add a require statement to ensure that the pair address is not a zero address. This would
safeguard against inadvertent or malicious attempts to set the pair to an invalid address.

Status - Fixed

A.7 Missing Value Checks [MEDIUM]

Description:

The setMarketingWallet and setDevWallet functions lack essential checks to validate the
input addresses. These functions directly set the _marketingWalletAddress and
_devWalletAddress, without verifying whether the provided addresses are valid or not.
Such an oversight could lead to accidental loss of funds or could be exploited if the owner’s
accountis compromised.

Code:

Risk Level:

Likelihood - 3
Impact - 3

Recommendation:

Non-zero Address Check: Add a require statement to ensure that the provided address is
notthe zero address.

Status - Fixed

A.8 Use of .transfer instead of call_

Description:

TheswapAndSendToFee functionusesthe .transfer method for sending ETHto _marketing-
WalletAddressand _devWalletAddress. Thisapproachis generally considered less safe for
acouple of reasons:

1. If the receiving contract has a fallback function that consumes more than 2300 gas,
the .transfer will fail.

2. It lacks flexibility and custom error handling that could be useful for debugging and
development.

Code:

18

1631 }

Risk Level:

Likelihood -3
Impact - 3

Recommendation:

1. Use .call{value: x}("") or a safeTransfer function: These methods offer better security
and more flexibility than .transfer. Using .call will also allow you to check the return
value for custom error handling.

2. Gas Checks: If you do opt for .call, make sure you are not making assumptions on the
gas needed for the external call.

Status - Fixed

A.9 Centralization Risk :blacklistAddress
Function [MEDIUM]

Description:

The blacklistAddress function allows only the contract owner to add or remove addresses
from the blacklist. While this might be intended for administrative convenience, it poses a
risk of centralization. A single entity controlling who can and cannot interact with the con-
tract could become a potential point of failure and diminishes trustin the decentralized sys-
tem.

Code:

Listing 9: smartstaking.sol

19

1435 function blacklistAddress(address account, bool value) external
— onlyOwner{
1436 _isBlacklisted[account] = value;

1437 }

Risk Level;

Likelihood -3
Impact - 3

Recommendation:

1. Decentralized Mechanism: Consider implementing a decentralized control mecha-
nism like a DAO (Decentralized Autonomous Organization) or governance tokens to
manage the blacklist. This would give the community a say in who gets blacklisted or

removed from it.

2. Multi-Signature Control: Alternatively, control of the blacklist could be assigned to
a multi-signature wallet, where multiple trusted parties must agree to blacklist or
whitelist an address. This would reduce the risk associated with single point of con-

trol.

3. Time-Lock: Introduce a time-lock for sensitive changes to allow users time to react
or exit the contract if they disagree with a proposed change.

4. Transparency. Always announce and explain any additions or removals from the
blacklist, to maintain trust and transparency with the users.

20

Status - Fixed

A10 Missing Balance Check Before Dividend

Withdrawal_

Description:

The function _withdrawDividendOfUser allows users to withdraw dividends without check-
ing if the contract has sufficient BUSD tokens to cover the withdrawal. Failing to check can
lead to failed transactions, wasted gas fees, and potential confusion for the users.

Code:

Risk Level:

Likelihood - 3
Impact -3

21

Recommendation:

Add a balance check before attempting the transfer to ensure that the contract has enough
BUSD tokens.

Status - Acknowledged

A1l Potential Sandwich Attacks [MEDIUM]

Description:

A sandwich attack occurs when an attacker capitalizes on a transaction that swaps tokens
or adds liquidity without establishing boundaries on slippage or the minimum output value.
By taking advantage of this oversight, the attacker can first influence the exchange rate by
executing a transaction ahead of the target (frontrunning) to buy one of the assets.
Subsequently, the attacker can profit by selling the asset right after the targeted
transaction (backrunning). Therefore, transactions that activate functions without setting
slippage restrictions or a minimum output value are susceptible to sandwich attacks,
particularly when dealing with large input amounts.

Code:

Listing 11: smartstaking.sol

7 function addLiquidity(uint256 tokenAmount, uint256 ethAmount) private {

1698 // approve token transfer to cover all possible scenarios

1699 _approve(address(this), address(uniswapV2Router), tokenAmount);
1701 // add the liquidity

1702 uniswapV2Router.addLiquidityETH{value: ethAmount}(

1703 address(this),

1704 tokenAmount,

1705 0, // slippage is unavoidable

1706 0, // slippage is unavoidable

1707 owner (),

1708 block.timestamp

22

Risk Level:

Likelihood - 3
Impact -3

Recommendation:

We recommend setting reasonable minimum output amounts, instead of 0, based on token
prices when caling the aforementioned functions

23

Status - Acknowledged

A.12 Inefficient Use of success Boolean and Redundant State

Modifications in _withdrawDividendOfUser

Function-

Description:

The _withdrawDividendOfUser function first updates the withdrawnDividends mapping by
adding the _withdrawableDividend and then checks the success boolean. If the transfer is
not successful, it reverts the change by subtracting _withdrawableDividend. This imple-
mentation is not only inefficient but could be simplified by using a require statement to en-
sure that the transfer is successful before updating the state variable.

Code:

Risk Level:

Likelihood -1
Impact - 2

Recommendation:

- 1. Use require Statement : Use a require statement to ensure that the token transfer
is successful. This will make the code more readable and efficient.

- 2. Optimize State Changes : Update the state variable withdrawnDividends only af-
ter the transfer has been confirmed to be successful. This will remove the need for
adding and then potentially subtracting the value, thereby making the function more
gas-efficient.

Status - Fixed

A13 Misleading Function Name setBUSDRewardsFee-

Description:

The function setBUSDRewardsFee is responsible for setting various fees within the con-
tract, including BUSDRewardsFee, liquidityFee, marketingFee, devFee, and burnFee. How-
ever, its name suggests that it's only for setting the BUSDRewardsFee, which can be mis-
leading.

Code:

Listing 14: smartstaking.sol
17 function setBUSDRewardsFee(uint256 rewardFee, uint256
<~ _liquidityFee, uint256 _marketingFee, uint256 _devFee,

< uint256 _burnFee) external onlyOwnerf{

118 BUSDRewardsFee = _rewardFee;
119 liquidityFee = _liquidityFee;
1420 marketingFee = marketingFee;
1421 devFee = _devFee;

25

Risk Level:

Likelihood -1
Impact - 2 Consider renaming the function to reflect its broader scope more accurately. A
more descriptive name might be setAllFees or updateFeeSettings.

Status - Fixed

A14 Blocking Transfers _

Description:

The _transfer function in DividendPayingToken , responsible for transferring tokens
between addresses, has been effectively disabled by the require(false); statement.

Code:

Risk Level:

Likelihood -1
Impact -1

Recommendation:

Re-enable the _transfer function if transfers are intended to be allowed. If not, make sure
to document this choice clearly in the comments and rationale.

Status - Fixed

27

4 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing
methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
used to test mathematical relationships between Solidity instances statically and
variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs
throughout the entire codebase.

Results:

28

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

96

5 Conclusion

In this audit, we examined the design and implementation of Smart Staking contract and
discovered severalissues of varying severity. $MART team addressed all the issues raised
inthe initial report and implemented the necessary fixes.

The present code base is well-structured and ready for the mainnet.

57

» BLOCKHAT

SECURITY

For a Smart Contract Audit, contact us at contact@blockhat.io

58

mailto:contact@blockhat.io

	Introduction
	About Smart Staking
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	smartstaking.sol
	Division By Zero [CRITICAL]
	Incorrect Token Distribution Logic in swapAndSendToFee Function [HIGH]
	Centralized risk in addLiquidity [HIGH]
	Non-Withdrawable BNB: swapAndLiquify function [HIGH]
	Missing Value Check for swapTokensAtAmount [HIGH]
	Missing Zero Address Check [MEDIUM]
	Missing Value Checks [MEDIUM]
	Use of .transfer instead of call [MEDIUM]
	Centralization Risk :blacklistAddress Function [MEDIUM]
	Missing Balance Check Before Dividend Withdrawal [MEDIUM]
	Potential Sandwich Attacks [MEDIUM]
	Inefficient Use of success Boolean and Redundant State Modifications in _withdrawDividendOfUser Function [LOW]
	Misleading Function Name setBUSDRewardsFee [LOW]
	Blocking Transfers [INFORMATIONAL]

	Static Analysis (Slither)
	Conclusion

