» BLOCKHAT

SECURITY

MindX

Smart Contract Security Audit

Prepared by BlockHat
April 10", 2024 - April 14", 2024
BlockHat.io
contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client mindx
Version 1.0
Classification Private
Scope

The MindX Contractin the MindX Repository

Link

Address

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

https://blockhat.io

Contents

1 Introduction
11 AboutMindX
1.2 Approach &Methodology
121 RiskMethodology

2 Findings Overview
21 Summary
22 KeyFindings.

3 Finding Details
A MindXsol

Al Potential Locking of ETH in Contract_

A2 Bot Detection Mechanism [[HIGH] . . .

A3 Taxation Calculation on Bot Transactions [HIGH]
A.4 Incomplete Bot Detection Condition [HIGH]
A5 Centralization of Critical Functional Controls [MEDIUM]
A.6 Function Naming Clarity for enableTrading [MEDIUM]
A7 ErrorHandlingintaxChange Function [MEDIUM]
A8 Optimizing Share Distribution Calculations-
A9 MintvsTransferforInitialDistribution-
A.10 Improving Code Readability in Token Minting [INFORMATIONAL]

A1l Utilization of Total Supply Variable [INFORMATIONAL]

A12 NamingClarity [INFORMATIONAL] . .

A13 RedundantTimestamp Assignment [INFORMATIONAL]

4 Best Practices
BP.1 Improving Numeric Constants Representation
BP.2 Unnecessary Initialization of Taxation Variable

5 Static Analysis (Slither)

6 Conclusion

o N &~ B~

O 0O 00 N9 93

1 Introduction

mindx engaged BlockHatto conduct asecurityassessmentonthe MindX beginning on April
10t, 2024 and ending April 14", 2024. In this report, we detail our methodical approach to
evaluate potential security issues associated with the implementation of smart contracts,
by exposing possible semantic discrepancies between the smart contract code and design
document, and by recommending additional ideas to optimize the existing code. Our find-
ings indicate that the current version of smart contracts can still be enhanced further due
to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About MindX

Issuer mindx

Website https://mindx.bot/
Type Solidity Smart Contract
Audit Method Whitebox

1.2 Approach & Methodology

BlockHat used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

https://mindx.bot/

1.21 Risk Methodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

‘6 High
g Medium
— Low Medium
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the MindX implementa-
tion. During the first part of our audit, we examine the smart contract source code and run
the codebase via a static code analyzer. The objective here is to find known coding prob-
lems statically and then manually check (reject or confirm) issues highlighted by the tool.
Additionally, we check business logics, system processes, and DeFi-related components
manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include 1
critical-severity, high-severity,

medium-severity, low-severity,

informational-severity vulnerabilities.

Vulnerabilities

Potential Locking of ETH in Contract

Severity

Status

Bot Detection Mechanism HIGH Not fixed
Taxation Calculation on Bot Transactions HIGH Not fixed
Incomplete Bot Detection Condition HIGH Not fixed
Centralization of Critical Functional Controls MEDIUM Not fixed
Function Naming Clarity for enableTrading MEDIUM Not fixed
Error Handling in taxChange Function MEDIUM Not fixed
Optimizing Share Distribution Calculations LOW Not fixed
Mint vs Transfer for Initial Distribution LOW Not fixed

INFORMATIONAL | Not fixed
INFORMATIONAL | Not fixed
INFORMATIONAL | Not fixed
INFORMATIONAL | Not fixed

Improving Code Readability in Token Minting

Utilization of Total Supply Variable

Naming Clarity

Redundant Timestamp Assignment

3 Finding Details

A MindX.sol
A1 Potential Locking of ETH in Contract _

Description:

The concernis that some amount of ETH could remain in the contract after the execution of
swapAndReward, potentially due to rounding errors or inefficiencies in the swap function.

7

Risk Level:

Likelihood -5
Impact-5

Recommendation:

We recommend adding a withdraw BNB function.

Status - Not fixed

A.2 BotDetection Mechanism [[HIGH]

Description:

The bot detection mechanism flags addresses based solely on the transaction being in the
same block, potentially leading to false positives. Additionally, the mechanismonly handles
bot marking on the buying side, ignoring the selling cases.

Listing 2: Mindx.sol

730 if (isBot[from]) {

731 super._transfer(from, TreasuryOwner, (amount / 100) *
< initial_tax);

732 }

Risk Level:

Likelihood - 4
Impact - 4

Recommendation:

Redesign the bot detection logic to include both buying and selling activities. Introduce a
more robust set of criteria for bot detection to reduce false positives, potentially including
a combination of transaction frequency, amount, and behavior over time.

Status - Not fixed

A.3 Taxation Calculation on Bot Transactions [[HIGH]

Description:

If an address is flagged as a bot, the function still proceeds to calculate and deduct taxes
after already transferring an initial tax, potentially resulting in incorrect final transfer
amounts.

Listing 3: Mindx.sol

743 super._transfer(from, to, amount - Taxation);
Risk Level:

Likelihood -3

Impact -3

Recommendation:

Ensurethatonce an addressis flagged as abot and penalized, further taxation calculations
are adjusted accordingly or halted to prevent double taxation orincorrect token transfers.

Status - Not fixed

A.4 Incomplete Bot Detection Condition |[HIGH]

Description:

The bot detection mechanisminthe_transfer function potentially fails to accurately identify
bots when from is a pair address. This specific condition appears to be unhandled, leading
to possible scenarios where bots could manipulate the system by avoiding detection.

Listing 4: Mindx.sol

723 if (_isExcludedMaxTransactionAmount [to]){
724 isBot [from] = true;
725 }

726 isBot[to] = true;

727 }

Risk Level:

Likelihood - 4
Impact-5

Recommendation:

Implement comprehensive bot detection logic thatincludes checks for both fromandto ad-
dressesin relation to pair addresses.

Status - Not fixed

A.5 Centralization of Critical Functional Controls [MEDIUM]

Description:

The Mindxsmart contractgrantsthe ownerunilateral controlover severalcriticalfunctions
including enabling/disabling trading, managing automated market maker pairs, exclusion
lists, and token burning. This concentration of power poses significant risks:

- Trading Control: The owner can toggle trading, potentially manipulating the market.

- AMM and Exclusion List Management: The owner can selectively manage which
addresses are exempt from transaction rules or are considered automated market

makers, potentially leading to unfair advantages and liquidity issues.

- Token Burning: The owner’s ability to burn tokens at will can unpredictably affect the
token supply and its market dynamics.

Listing 5: Mindx.sol

841 function enableTrading(bool _status) external onlyOwner {

643 tradingEnabled = _status;

10

814 }

Risk Level:

Likelihood - 4
Impact-5

Recommendation:

- Decentralized Governance Implementation: Transition these controls to a
decentralized governance framework, such as through a DAO or a committee
system using multisig wallets.

- Introduction of Timelocks: Implement timelocks for critical actions like toggling trad-
ing or modifying smart contract parameters.

- Transparent and Rule-Based Criteria: Develop clear, documented criteria for
managing automated market maker pairs and exclusion lists. This helps ensure that
changes are justified, transparent, and not subject to misuse.

Status - Not fixed

A.6 Function Naming Clarity for enableTrading [MEDIUM]

Description:

The function enableTradingtogglesthe trading status butisnamed asifitonly enablestrad-
ing, which could mislead users or developers regarding its functionality.

Listing 8: Mindx.sol

641 function enableTrading(bool _status) external onlyOwner {
643 tradingEnabled = _status;

" emit enable_trading(_status);

645 }

12

Risk Level:

Likelihood - 3
Impact -3

Recommendation:

Rename the function to toggleTrading to more accurately reflect that it can both enable and
disable trading. This change improves clarity and reduces the potential for misuse or con-
fusion.

Status - Not fixed

A.T ErrorHandlingintaxChange Function _

Description:

The taxChange function uses generic error messages which do not specify the exact cause
of the revert, reducing the function’s usability and debuggability.

13

Risk Level:

Likelihood - 3
Impact -3

Recommendation:

Use specific error messages for each validation check. For instance, differentiate between
errors arising from the buy tax being too high, too low, or the sell tax conditions. This can
be done by using messages like "Buy tax must be between 0 and 20" and "Sell tax must be
between 0 and 20".

Status - Not fixed

A.8 Optimizing Share Distribution Calculations-

Description:

Shares for different stakeholders (e.g., TechTeam, Marketing) are calculated and then
transferredin a way that might use extra gas due to the creation of intermediate variables.

14

Risk Level:

Likelihood -3
Impact - 2

Recommendation:

Directly compute and transfer shares in the transfer function call to reduce gas usage, e.g.,
transfer(TechTeam, (totalSupply() /100) * 5).

Status - Not fixed

A.9 MintvsTransfer forInitial Distribution -

Description:

Theuseofthetransferfunctionfordistributing sharestovarious stakeholdersraises ques-
tions about whether the shares are being deducted from the owner or additional minting

should be considered.

15

Risk Level:

Likelihood - 3
Impact -3

Recommendation:

Consider using the mint function for initial distributions to clearly define token allocations
without impacting the owner’s holdings, ensuring transparency and accuracy in token dis-
tribution.

Status - Not fixed

A10 Improving Code Readability in Token

Minting [INFORMATIONAL]

Description:

The minting of tokens uses 240 * 1e24, which could be simplified for better readability and to
avoid potential errors during code modifications.

o minlomerO, 200 % 1e20); /20N
16

Risk Level:

Likelihood -2
Impact -1

Recommendation:

It's recommended to use 240e24 to express the minting amount, enhancing the clarity and
reducing potential misunderstandings.

Status - Not fixed

A.11 Utilization of Total Supply Variable [INFORMATIONAL]

Description:

The total_Supply is redundantly calculated by getting the owner’s balance post-minting,
whichis unnecessary since totalSupply() function provides this value inherently.

Listing 13: Mindx.sol

615 uint total Supply = balanceOf (owner());

Risk Level:
Likelihood - 3

Impact - 2

Recommendation:

Replace balanceOf(owner()) with totalSupply() directly after minting to optimize gas costs
and rely on ERC20’s built-in functionality.

17

Status - Not fixed

A.12 Naming Clarity [INFORMATIONAL]

Description:

The mapping _isExcludedMaxTransactionAmount is used to determine if an address is ex-
cluded from maximum transaction checks, but its naming suggests broader or different
functionality.

Listing 14: Mindx.sol

547 mapping(address => bool) public _isExcludedMaxTransactionAmount;

Risk Level:

Likelihood -3
Impact - 2

Recommendation:

Rename _isExcludedMaxTransactionAmount to more accurately reflect its purpose, such
as _isPairAddress, to avoid confusion and improve code readability.

Status - Not fixed

A.13 Redundant Timestamp Assignment [INFORMATIONAL]

Description:

The function assigns timestamps to _tierTimestamp mapping for both from and to
addresses in every transaction without clear purpose or usage documented in the
function.

Listing 15: Mindx.sol

742 _tierTimestamp[to] = block.timestamp;

743 _tierTimestamp[from] = block.timestamp;

18

Risk Level:

Likelihood -2
Impact -1

Recommendation:

Clarify the purpose of _tierTimestamp in the code documentation or remove this function-
ality ifitis unused to save gas and reduce contract complexity.

Status - Not fixed

19

4 Best Practices

BP.1 Improving Numeric Constants
Representation
Description:

Numeric constants for initial distributions to PreSale and Surplus are not using power no-
tation which affects readability.

Code:

Listing 16: Mindx.sol
626 transfer (PreSale,63 370 _000_000_000_000_000_000_000) ;

627

628 transfer (Surplus,28_130_000_000_000_000_000_000_000) ;

BP.2 Unnecessary Initialization of Taxation
Variable

Description:

The variable Taxation is initialized to zero at the start of the function, which is redundant
since itis conditionally set later.

Code:

Listing 17: Mindx.sol

702 uint Taxation = O0;
703 if (_automatedMarketMaker[from] || _automatedMarketMaker[to]) {
704 Taxation = 0;

20

5 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing
methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
used to test mathematical relationships between Solidity instances statically and
variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

21

Parameter Mindx.removing isExcludedMaxTransactionAmount (address)._a (
< MindX.sol#927) is not in mixedCase

Function Mindx.adding_automatedMarketMakerPairs(address) (MindX.sol
< #932-935) is not in mixedCase

Parameter Mindx.adding automatedMarketMakerPairs(address)._a (MindX.sol
< #932) is not in mixedCase

Function Mindx.removing automatedMarketMakerPairs(address) (MindX.sol
— #937-940) is not in mixedCase

Parameter Mindx.removing automatedMarketMakerPairs(address). a (MindX.
< s0l#937) is not in mixedCase

Function Mindx.BurnDevToken(uint256) (MindX.sol#946-948) is not in
— mixedCase

Parameter Mindx.setSwapAndLiquifyEnabled(bool)._enabled (MindX.sol#950)
<~ is not in mixedCase

Variable Mindx. isExcludedMaxTransactionAmount (MindX.sol#681) is not in
<~ mixedCase

Variable Mindx. automatedMarketMaker (MindX.sol#682) is not in mixedCase

Variable Mindx.RevenueShare (MindX.sol#685) is not in mixedCase

Variable Mindx.OwnerShare (MindX.sol#686) is not in mixedCase

Variable Mindx.initial tax (MindX.sol#689) is not in mixedCase

Variable Mindx.second buy limit (MindX.sol#695) is not in mixedCase

Variable Mindx.initial_inject_timestamp (MindX.sol#696) is not in
— mixedCase

Variable Mindx.TechTeam (MindX.sol#697) is not in mixedCase

Variable Mindx.TreasuryRevenue (MindX.sol#698) is not in mixedCase

Variable Mindx.TreasuryOwner (MindX.sol#699) is not in mixedCase

Variable Mindx.Marketing (MindX.sol#700) is not in mixedCase

Variable Mindx.CEX (MindX.sol#701) is not in mixedCase

Variable Mindx.PreSale (MindX.sol#702) is not in mixedCase

Variable Mindx.CReward (MindX.sol#703) is not in mixedCase

Variable Mindx.Surplus (MindX.sol#704) is not in mixedCase

Variable Mindx._tierTimestamp (MindX.sol#706) is not in mixedCase

Variable Mindx. transactorLastblock (MindX.sol#708) is not in mixedCase

30

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

33

6 Conclusion

We examined the design and implementation of MindX in this audit and found several
issues of various severities. We advise mindx team to implement the recommendations
contained in all 13 of our findings to further enhance the code’s security. It is of utmost
priority to start by addressing the most severe exploit discovered by the auditors then
followed by the remaining exploits, and finally we will be conducting a re-audit following
the implementation of the remediation plan contained in this report.

We would much appreciate any constructive feedback or suggestions regarding our
methodology, audit findings, or potential scope gaps in this report.

34

» BLOCKHAT

SECURITY

For a Smart Contract Audit, contact us at contact@blockhat.io

35

mailto:contact@blockhat.io

	Introduction
	About MindX
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	MindX.sol
	Potential Locking of ETH in Contract [CRITICAL]
	Bot Detection Mechanism [HIGH]
	Taxation Calculation on Bot Transactions [HIGH]
	Incomplete Bot Detection Condition [HIGH]
	Centralization of Critical Functional Controls [MEDIUM]
	Function Naming Clarity for enableTrading [MEDIUM]
	Error Handling in taxChange Function [MEDIUM]
	Optimizing Share Distribution Calculations [LOW]
	Mint vs Transfer for Initial Distribution [LOW]
	Improving Code Readability in Token Minting [INFORMATIONAL]
	Utilization of Total Supply Variable [INFORMATIONAL]
	Naming Clarity [INFORMATIONAL]
	Redundant Timestamp Assignment [INFORMATIONAL]

	Best Practices
	Improving Numeric Constants Representation
	Unnecessary Initialization of Taxation Variable

	Static Analysis (Slither)
	Conclusion

