
MindX

Smart Contract Security Audit

Prepared byBlockHat

April 10th, 2024 -April 14th, 2024

BlockHat.io

contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client mindx

Version 1.0

Classification Private

Scope

TheMindX Contract in theMindX Repository

Link Address

- -

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

2

https://blockhat.io

Contents

1 Introduction 4

1.1 AboutMindX . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

A MindX.sol . 7

A.1 Potential Locking of ETH in Contract [CRITICAL] 7

A.2 Bot DetectionMechanism [HIGH] . 8

A.3 Taxation Calculation onBot Transactions [HIGH] 9

A.4 Incomplete Bot Detection Condition [HIGH] 9

A.5 Centralization of Critical Functional Controls [MEDIUM] 10

A.6 FunctionNamingClarity for enableTrading [MEDIUM] 12

A.7 ErrorHandling in taxChange Function [MEDIUM] 13

A.8 Optimizing ShareDistribution Calculations [LOW] 14

A.9 Mint vs Transfer for Initial Distribution [LOW] 15

A.10 Improving CodeReadability in TokenMinting [INFORMATIONAL] . . 16

A.11 Utilization of Total Supply Variable [INFORMATIONAL] 17

A.12 NamingClarity [INFORMATIONAL] . 18

A.13 Redundant TimestampAssignment [INFORMATIONAL] 18

4 Best Practices 20

BP.1 ImprovingNumeric Constants Representation 20

BP.2 Unnecessary Initialization of Taxation Variable 20

5 Static Analysis (Slither) 21

6 Conclusion 34

3

1 Introduction

mindx engagedBlockHat toconductasecurityassessmentontheMindX beginningonApril

10th, 2024 and ending April 14th, 2024. In this report, we detail our methodical approach to

evaluate potential security issues associatedwith the implementation of smart contracts,

by exposing possible semantic discrepancies between the smart contract code and design

document, and by recommending additional ideas to optimize the existing code. Our find-

ings indicate that the current version of smart contracts can still be enhanced further due

to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 AboutMindX

Issuer mindx

Website https://mindx.bot/

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

BlockHat used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

https://mindx.bot/

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview

2.1 Summary

The following is a synopsis of our conclusions fromour analysis of theMindX implementa-

tion. During the first part of our audit, we examine the smart contract source code and run

the codebase via a static code analyzer. The objective here is to find known coding prob-

lems statically and thenmanually check (reject or confirm) issues highlighted by the tool.

Additionally, we check business logics, system processes, and DeFi-related components

manually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include 1

critical-severity, 3 high-severity, 3 medium-severity, 2 low-severity, 4

informational-severity vulnerabilities.

Vulnerabilities Severity Status

Potential Locking of ETH in Contract CRITICAL Not fixed

Bot DetectionMechanism HIGH Not fixed

Taxation Calculation onBot Transactions HIGH Not fixed

Incomplete Bot Detection Condition HIGH Not fixed

Centralization of Critical Functional Controls MEDIUM Not fixed

FunctionNamingClarity for enableTrading MEDIUM Not fixed

ErrorHandling in taxChange Function MEDIUM Not fixed

Optimizing ShareDistribution Calculations LOW Not fixed

Mint vs Transfer for Initial Distribution LOW Not fixed

Improving CodeReadability in TokenMinting INFORMATIONAL Not fixed

Utilization of Total Supply Variable INFORMATIONAL Not fixed

NamingClarity INFORMATIONAL Not fixed

Redundant TimestampAssignment INFORMATIONAL Not fixed

6

3 FindingDetails

A MindX.sol

A.1 Potential Locking of ETH in Contract [CRITICAL]

Description:

The concern is that some amount of ETH could remain in the contract after the execution of

swapAndReward, potentially due to rounding errors or inefficiencies in the swap function.

Listing 1: Mindx.sol

748 function swapAndReward(uint256 contractTokenBalance) private

↪→ lockTheSwap {

749 // split the contract balance into halves

750 uint256 half = contractTokenBalance / 2;

752 uint256 otherHalf = contractTokenBalance - half;

754 uint256 initialBalance = address(this).balance;

756 swapTokensForEth(half);

758 uint256 newBalance = address(this).balance - initialBalance;

760 // Send ETH amount of newBalance to TreasuryOwner

761 payable(TreasuryOwner).transfer(newBalance);

762 uint _owner_share = (otherHalf / 100) * OwnerShare;

763 uint _revenue_share = otherHalf - _owner_share;

764 super._transfer(address(this), TreasuryRevenue, _revenue_share);

765 super._transfer(address(this), TreasuryOwner, _owner_share);

767 }

7

Risk Level:

Likelihood – 5

Impact - 5

Recommendation:

We recommend adding awithdrawBNB function.

Status -Not fixed

A.2 Bot DetectionMechanism [HIGH]

Description:

The bot detectionmechanism flags addresses based solely on the transaction being in the

sameblock,potentially leadingto falsepositives. Additionally, themechanismonlyhandles

botmarking on the buying side, ignoring the selling cases.

Listing 2: Mindx.sol

730 if(isBot[from]) {

731 super._transfer(from, TreasuryOwner, (amount / 100) *

↪→ initial_tax);

732 }

Risk Level:

Likelihood – 4

Impact - 4

Recommendation:

Redesign the bot detection logic to include both buying and selling activities. Introduce a

more robust set of criteria for bot detection to reduce false positives, potentially including

a combination of transaction frequency, amount, and behavior over time.

8

Status -Not fixed

A.3 Taxation Calculation onBot Transactions [HIGH]

Description:

If an address is flagged as a bot, the function still proceeds to calculate and deduct taxes

after already transferring an initial tax, potentially resulting in incorrect final transfer

amounts.

Listing 3: Mindx.sol

743 super._transfer(from, to, amount - Taxation);

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Ensure that onceanaddress is flaggedasabot andpenalized, further taxationcalculations

areadjustedaccordinglyorhalted topreventdouble taxationor incorrect token transfers.

Status -Not fixed

A.4 Incomplete Bot Detection Condition [HIGH]

Description:

Thebotdetectionmechanismin the_transfer functionpotentially fails toaccurately identify

bots when from is a pair address. This specific condition appears to be unhandled, leading

to possible scenarioswhere bots couldmanipulate the systemby avoiding detection.

Listing 4: Mindx.sol

723 if(_isExcludedMaxTransactionAmount[to]){

724 isBot[from] = true;

725 }

9

726 isBot[to] = true;

727 }

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

Implementcomprehensivebotdetection logic that includeschecks forboth fromand toad-

dresses in relation to pair addresses.

Status -Not fixed

A.5 Centralization of Critical Functional Controls [MEDIUM]

Description:

TheMindxsmartcontractgrantstheownerunilateralcontroloverseveralcritical functions

including enabling/disabling trading, managing automatedmarket maker pairs, exclusion

lists, and token burning. This concentration of power poses significant risks:

• Trading Control: The owner can toggle trading, potentiallymanipulating themarket.

• AMM and Exclusion List Management: The owner can selectively manage which

addresses are exempt from transaction rules or are considered automated market

makers, potentially leading to unfair advantages and liquidity issues.

• Token Burning: The owner’s ability to burn tokens at will can unpredictably affect the

token supply and itsmarket dynamics.

Listing 5: Mindx.sol

641 function enableTrading(bool _status) external onlyOwner {

643 tradingEnabled = _status;

10

644 emit enable_trading(_status);

645 }

Listing 6: Mindx.sol

785 function adding_isExcludedMaxTransactionAmount(address _a) public

↪→ onlyOwner{

786 _isExcludedMaxTransactionAmount[_a] = true;

787 initial_inject_timestamp = block.timestamp;

788 tradingEnabled = true;

790 emit adding_isExcluded(_a);

791 }

793 function removing_isExcludedMaxTransactionAmount(address _a) public

↪→ onlyOwner{

794 delete _isExcludedMaxTransactionAmount[_a];

795 emit removing_isExcluded(_a);

796 }

798 function adding_automatedMarketMakerPairs(address _a) public

↪→ onlyOwner {

799 _automatedMarketMaker[_a] = true;

800 emit adding_automated(_a);

801 }

803 function removing_automatedMarketMakerPairs(address _a) public

↪→ onlyOwner{

804 delete _automatedMarketMaker[_a];

805 emit removing_automated(_a);

806 }

Listing 7: Mindx.sol

812 function BurnDevToken(uint256 amount) public onlyOwner {

813 _burn(owner(), amount);

11

814 }

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

• Decentralized Governance Implementation: Transition these controls to a

decentralized governance framework, such as through a DAO or a committee

systemusingmultisigwallets.

• Introductionof Timelocks: Implement timelocks forcritical actions like toggling trad-

ing ormodifying smart contract parameters.

• Transparent and Rule-Based Criteria: Develop clear, documented criteria for

managing automatedmarketmaker pairs and exclusion lists. This helps ensure that

changes are justified, transparent, and not subject tomisuse.

Status -Not fixed

A.6 FunctionNamingClarity for enableTrading [MEDIUM]

Description:

The functionenableTrading toggles the tradingstatusbut isnamedas if it onlyenables trad-

ing,which couldmislead users or developers regarding its functionality.

Listing 8: Mindx.sol

641 function enableTrading(bool _status) external onlyOwner {

643 tradingEnabled = _status;

644 emit enable_trading(_status);

645 }

12

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Rename the function to toggleTrading tomore accurately reflect that it can both enable and

disable trading. This change improves clarity and reduces the potential formisuse or con-

fusion.

Status -Not fixed

A.7 ErrorHandling in taxChange Function [MEDIUM]

Description:

The taxChange function uses generic errormessageswhich donot specify the exact cause

of the revert, reducing the function’s usability and debuggability.

Listing 9: Mindx.sol

647 function taxChange(uint _b, uint _s) external onlyOwner {

648 if(_b > 20){

649 revert("The wrong number inputed");

650 }

651 if(_b < 0){

652 revert("The wrong number inputed");

653 }

654 if(_s > 20){

655 revert("The wrong number inputed");

656 }

657 if(_s < 0){

658 revert("The wrong number inputed");

659 }

13

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Usespecific errormessages for each validation check. For instance, differentiate between

errors arising from the buy tax being too high, too low, or the sell tax conditions. This can

be done by using messages like ”Buy tax must be between 0 and 20” and ”Sell tax must be

between 0 and 20”.

Status -Not fixed

A.8 Optimizing ShareDistribution Calculations [LOW]

Description:

Shares for different stakeholders (e.g., TechTeam, Marketing) are calculated and then

transferred in away thatmight use extra gas due to the creation of intermediate variables.

Listing 10: Mindx.sol

614 _mint(owner(), 240 * 1e24); //240M

615 uint total_Supply = balanceOf(owner());

617 uint techTeam_share = (total_Supply / 100) * 5;

618 transfer(TechTeam, techTeam_share);

620 uint Marketing_share = (total_Supply / 100) * 15;

621 transfer(Marketing, Marketing_share);

623 uint CEX_share = (total_Supply / 100) * 10;

624 transfer(CEX,CEX_share);

626 transfer(PreSale,63_370_000_000_000_000_000_000_000);

14

628 transfer(Surplus,28_130_000_000_000_000_000_000_000);

630 uint CReward_share = (total_Supply / 100) * 10;

631 transfer(CReward,CReward_share);

Risk Level:

Likelihood – 3

Impact - 2

Recommendation:

Directly compute and transfer shares in the transfer function call to reduce gasusage, e.g.,

transfer(TechTeam, (totalSupply() / 100) * 5).

Status -Not fixed

A.9 Mint vs Transfer for Initial Distribution [LOW]

Description:

Theuseof thetransfer functionfordistributingsharestovariousstakeholdersraisesques-

tions about whether the shares are being deducted from the owner or additional minting

should be considered.

Listing 11: Mindx.sol

614 _mint(owner(), 240 * 1e24); //240M

615 uint total_Supply = balanceOf(owner());

617 uint techTeam_share = (total_Supply / 100) * 5;

618 transfer(TechTeam, techTeam_share);

620 uint Marketing_share = (total_Supply / 100) * 15;

621 transfer(Marketing, Marketing_share);

15

623 uint CEX_share = (total_Supply / 100) * 10;

624 transfer(CEX,CEX_share);

626 transfer(PreSale,63_370_000_000_000_000_000_000_000);

628 transfer(Surplus,28_130_000_000_000_000_000_000_000);

630 uint CReward_share = (total_Supply / 100) * 10;

631 transfer(CReward,CReward_share);

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Consider using themint function for initial distributions to clearly define token allocations

without impacting the owner’s holdings, ensuring transparency and accuracy in token dis-

tribution.

Status -Not fixed

A.10 Improving Code Readability in Token

Minting [INFORMATIONAL]

Description:

Themintingof tokensuses240 * 1e24,whichcouldbesimplified forbetter readability and to

avoid potential errors during codemodifications.

Listing 12: Mindx.sol

614 _mint(owner(), 240 * 1e24); //240M

16

Risk Level:

Likelihood – 2

Impact - 1

Recommendation:

It’s recommended to use 240e24 to express theminting amount, enhancing the clarity and

reducing potentialmisunderstandings.

Status -Not fixed

A.11 Utilization of Total Supply Variable [INFORMATIONAL]

Description:

The total_Supply is redundantly calculated by getting the owner’s balance post-minting,

which is unnecessary since totalSupply() function provides this value inherently.

Listing 13: Mindx.sol

615 uint total_Supply = balanceOf(owner());

Risk Level:

Likelihood – 3

Impact - 2

Recommendation:

Replace balanceOf(owner()) with totalSupply() directly afterminting to optimize gas costs

and rely on ERC20’s built-in functionality.

17

Status -Not fixed

A.12 NamingClarity [INFORMATIONAL]

Description:

Themapping _isExcludedMaxTransactionAmount is used to determine if an address is ex-

cluded from maximum transaction checks, but its naming suggests broader or different

functionality.

Listing 14: Mindx.sol

547 mapping(address => bool) public _isExcludedMaxTransactionAmount;

Risk Level:

Likelihood – 3

Impact - 2

Recommendation:

Rename _isExcludedMaxTransactionAmount to more accurately reflect its purpose, such

as _isPairAddress, to avoid confusion and improve code readability.

Status -Not fixed

A.13 Redundant TimestampAssignment [INFORMATIONAL]

Description:

The function assigns timestamps to _tierTimestamp mapping for both from and to

addresses in every transaction without clear purpose or usage documented in the

function.

Listing 15: Mindx.sol

742 _tierTimestamp[to] = block.timestamp;

743 _tierTimestamp[from] = block.timestamp;

18

Risk Level:

Likelihood – 2

Impact - 1

Recommendation:

Clarify the purpose of _tierTimestamp in the code documentation or remove this function-

ality if it is unused to save gas and reduce contract complexity.

Status -Not fixed

19

4 Best Practices

BP.1 Improving Numeric Constants

Representation

Description:

Numeric constants for initial distributions to PreSale and Surplus are not using power no-

tationwhich affects readability.

Code:

Listing 16: Mindx.sol

626 transfer(PreSale,63_370_000_000_000_000_000_000_000);

627

628 transfer(Surplus,28_130_000_000_000_000_000_000_000);

BP.2 Unnecessary Initialization of Taxation

Variable

Description:

The variable Taxation is initialized to zero at the start of the function, which is redundant

since it is conditionally set later.

Code:

Listing 17: Mindx.sol

702 uint Taxation = 0;

703 if (_automatedMarketMaker[from] || _automatedMarketMaker[to]) {

704 Taxation = 0;

20

5 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing

methodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

used to test mathematical relationships between Solidity instances statically and

variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

Reentrancy in Mindx._transfer(address,address,uint256) (MindX.sol

↪→ #815-880):

External calls:

- swapAndReward(contractTokenBalance) (MindX.sol#833)

- uniswapV2Router.swapExactTokensForETH(tokenAmount,0,path

↪→ ,address(this),block.timestamp) (MindX.sol#911-917)

External calls sending eth:

- swapAndReward(contractTokenBalance) (MindX.sol#833)

- address(TreasuryOwner).transfer(newBalance) (MindX.sol

↪→ #895)

State variables written after the call(s):

- super._transfer(from,TreasuryOwner,(amount / 100) * initial_tax

↪→) (MindX.sol#865)

- _balances[sender] = senderBalance - amount (MindX.sol

↪→ #616)

- _balances[recipient] += amount (MindX.sol#618)

ERC20._balances (MindX.sol#492) can be used in cross function

↪→ reentrancies:

- ERC20._burn(address,uint256) (MindX.sol#637-652)

- ERC20._mint(address,uint256) (MindX.sol#625-635)

- ERC20._transfer(address,address,uint256) (MindX.sol#600-623)

21

- ERC20.balanceOf(address) (MindX.sol#522-526)

- super._transfer(from,address(this),Taxation) (MindX.sol#873)

- _balances[sender] = senderBalance - amount (MindX.sol

↪→ #616)

- _balances[recipient] += amount (MindX.sol#618)

ERC20._balances (MindX.sol#492) can be used in cross function

↪→ reentrancies:

- ERC20._burn(address,uint256) (MindX.sol#637-652)

- ERC20._mint(address,uint256) (MindX.sol#625-635)

- ERC20._transfer(address,address,uint256) (MindX.sol#600-623)

- ERC20.balanceOf(address) (MindX.sol#522-526)

- super._transfer(from,to,amount - Taxation) (MindX.sol#879)

- _balances[sender] = senderBalance - amount (MindX.sol

↪→ #616)

- _balances[recipient] += amount (MindX.sol#618)

ERC20._balances (MindX.sol#492) can be used in cross function

↪→ reentrancies:

- ERC20._burn(address,uint256) (MindX.sol#637-652)

- ERC20._mint(address,uint256) (MindX.sol#625-635)

- ERC20._transfer(address,address,uint256) (MindX.sol#600-623)

- ERC20.balanceOf(address) (MindX.sol#522-526)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #reentrancy-vulnerabilities

INFO:Detectors:

Mindx.constructor(address) (MindX.sol#733-771) performs a multiplication

↪→ on the result of a division:

- techTeam_share = (total_Supply / 100) * 5 (MindX.sol#751)

Mindx.constructor(address) (MindX.sol#733-771) performs a multiplication

↪→ on the result of a division:

- Marketing_share = (total_Supply / 100) * 15 (MindX.sol#754)

Mindx.constructor(address) (MindX.sol#733-771) performs a multiplication

↪→ on the result of a division:

- CEX_share = (total_Supply / 100) * 10 (MindX.sol#757)

22

Mindx.constructor(address) (MindX.sol#733-771) performs a multiplication

↪→ on the result of a division:

- CReward_share = (total_Supply / 100) * 10 (MindX.sol#764)

Mindx._transfer(address,address,uint256) (MindX.sol#815-880) performs a

↪→ multiplication on the result of a division:

- Taxation = (amount / 100) * Taxation (MindX.sol#870)

Mindx._transfer(address,address,uint256) (MindX.sol#815-880) performs a

↪→ multiplication on the result of a division:

- super._transfer(from,TreasuryOwner,(amount / 100) * initial_tax

↪→) (MindX.sol#865)

Mindx.swapAndReward(uint256) (MindX.sol#882-901) performs a

↪→ multiplication on the result of a division:

- _owner_share = (otherHalf / 100) * OwnerShare (MindX.sol#896)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #divide-before-multiply

INFO:Detectors:

Mindx._transfer(address,address,uint256) (MindX.sol#815-880) uses a

↪→ dangerous strict equality:

- _transactorLastblock[tx.origin] == block.number (MindX.sol#855)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #dangerous-strict-equalities

INFO:Detectors:

Mindx._transfer(address,address,uint256) (MindX.sol#815-880) uses tx.

↪→ origin for authorization: _transactorLastblock[tx.origin] ==

↪→ block.number (MindX.sol#855)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #dangerous-usage-of-txorigin

INFO:Detectors:

Mindx.taxChange(uint256,uint256) (MindX.sol#781-799) contains a

↪→ tautology or contradiction:

- _b < 0 (MindX.sol#785)

Mindx.taxChange(uint256,uint256) (MindX.sol#781-799) contains a

↪→ tautology or contradiction:

- _s < 0 (MindX.sol#791)

23

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #tautology-or-contradiction

INFO:Detectors:

Mindx.swapTokensForEth(uint256) (MindX.sol#903-918) ignores return value

↪→ by uniswapV2Router.swapExactTokensForETH(tokenAmount,0,path,

↪→ address(this),block.timestamp) (MindX.sol#911-917)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #unused-return

INFO:Detectors:

Reentrancy in Mindx._transfer(address,address,uint256) (MindX.sol

↪→ #815-880):

External calls:

- swapAndReward(contractTokenBalance) (MindX.sol#833)

- uniswapV2Router.swapExactTokensForETH(tokenAmount,0,path

↪→ ,address(this),block.timestamp) (MindX.sol#911-917)

External calls sending eth:

- swapAndReward(contractTokenBalance) (MindX.sol#833)

- address(TreasuryOwner).transfer(newBalance) (MindX.sol

↪→ #895)

State variables written after the call(s):

- _tierTimestamp[to] = block.timestamp (MindX.sol#876)

- _tierTimestamp[from] = block.timestamp (MindX.sol#877)

- _transactorLastblock[tx.origin] = block.number (MindX.sol#867)

- isBot[from] = true (MindX.sol#858)

- isBot[to] = true (MindX.sol#860)

Reentrancy in Mindx.swapAndReward(uint256) (MindX.sol#882-901):

External calls:

- swapTokensForEth(half) (MindX.sol#890)

- uniswapV2Router.swapExactTokensForETH(tokenAmount,0,path

↪→ ,address(this),block.timestamp) (MindX.sol#911-917)

External calls sending eth:

- address(TreasuryOwner).transfer(newBalance) (MindX.sol#895)

State variables written after the call(s):

24

- super._transfer(address(this),TreasuryRevenue,_revenue_share) (

↪→ MindX.sol#898)

- _balances[sender] = senderBalance - amount (MindX.sol

↪→ #616)

- _balances[recipient] += amount (MindX.sol#618)

- super._transfer(address(this),TreasuryOwner,_owner_share) (

↪→ MindX.sol#899)

- _balances[sender] = senderBalance - amount (MindX.sol

↪→ #616)

- _balances[recipient] += amount (MindX.sol#618)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #reentrancy-vulnerabilities-2

INFO:Detectors:

Reentrancy in Mindx._transfer(address,address,uint256) (MindX.sol

↪→ #815-880):

External calls:

- swapAndReward(contractTokenBalance) (MindX.sol#833)

- uniswapV2Router.swapExactTokensForETH(tokenAmount,0,path

↪→ ,address(this),block.timestamp) (MindX.sol#911-917)

External calls sending eth:

- swapAndReward(contractTokenBalance) (MindX.sol#833)

- address(TreasuryOwner).transfer(newBalance) (MindX.sol

↪→ #895)

Event emitted after the call(s):

- Transfer(sender,recipient,amount) (MindX.sol#620)

- super._transfer(from,to,amount - Taxation) (MindX.sol

↪→ #879)

- Transfer(sender,recipient,amount) (MindX.sol#620)

- super._transfer(from,address(this),Taxation) (MindX.sol

↪→ #873)

- Transfer(sender,recipient,amount) (MindX.sol#620)

- super._transfer(from,TreasuryOwner,(amount / 100) *

↪→ initial_tax) (MindX.sol#865)

Reentrancy in Mindx.swapAndReward(uint256) (MindX.sol#882-901):

25

External calls:

- swapTokensForEth(half) (MindX.sol#890)

- uniswapV2Router.swapExactTokensForETH(tokenAmount,0,path

↪→ ,address(this),block.timestamp) (MindX.sol#911-917)

External calls sending eth:

- address(TreasuryOwner).transfer(newBalance) (MindX.sol#895)

Event emitted after the call(s):

- Transfer(sender,recipient,amount) (MindX.sol#620)

- super._transfer(address(this),TreasuryOwner,_owner_share

↪→) (MindX.sol#899)

- Transfer(sender,recipient,amount) (MindX.sol#620)

- super._transfer(address(this),TreasuryRevenue,

↪→ _revenue_share) (MindX.sol#898)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #reentrancy-vulnerabilities-3

INFO:Detectors:

Mindx._transfer(address,address,uint256) (MindX.sol#815-880) uses

↪→ timestamp for comparisons

Dangerous comparisons:

- require(bool,string)(initial_inject_timestamp > 0,not paired

↪→ yet) (MindX.sol#843)

- require(bool,string)(block.timestamp - initial_inject_timestamp

↪→ > second_buy_limit,not enabled yet) (MindX.sol#844)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #block-timestamp

INFO:Detectors:

Address._revert(bytes,string) (MindX.sol#474-489) uses assembly

- INLINE ASM (MindX.sol#482-485)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #assembly-usage

INFO:Detectors:

Mindx._transfer(address,address,uint256) (MindX.sol#815-880) compares to

↪→ a boolean constant:

-tradingEnabled == false (MindX.sol#840)

26

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #boolean-equality

INFO:Detectors:

Different versions of Solidity are used:

- Version used: ['^0.8.0', '^0.8.20']

- ^0.8.0 (MindX.sol#138)

- ^0.8.20 (MindX.sol#7)

- ^0.8.20 (MindX.sol#38)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #different-pragma-directives-are-used

INFO:Detectors:

Address._revert(bytes,string) (MindX.sol#474-489) is never used and

↪→ should be removed

Address.functionCall(address,bytes) (MindX.sol#333-344) is never used

↪→ and should be removed

Address.functionCall(address,bytes,string) (MindX.sol#346-352) is never

↪→ used and should be removed

Address.functionCallWithValue(address,bytes,uint256) (MindX.sol#354-366)

↪→ is never used and should be removed

Address.functionCallWithValue(address,bytes,uint256,string) (MindX.sol

↪→ #368-388) is never used and should be removed

Address.functionDelegateCall(address,bytes) (MindX.sol#417-427) is never

↪→ used and should be removed

Address.functionDelegateCall(address,bytes,string) (MindX.sol#429-442)

↪→ is never used and should be removed

Address.functionStaticCall(address,bytes) (MindX.sol#390-400) is never

↪→ used and should be removed

Address.functionStaticCall(address,bytes,string) (MindX.sol#402-415) is

↪→ never used and should be removed

Address.isContract(address) (MindX.sol#316-318) is never used and should

↪→ be removed

Address.sendValue(address,uint256) (MindX.sol#320-331) is never used and

↪→ should be removed

27

Address.verifyCallResult(bool,bytes,string) (MindX.sol#462-472) is never

↪→ used and should be removed

Address.verifyCallResultFromTarget(address,bool,bytes,string) (MindX.sol

↪→ #444-460) is never used and should be removed

Context._contextSuffixLength() (MindX.sol#28-30) is never used and

↪→ should be removed

Context._msgData() (MindX.sol#24-26) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #dead-code

INFO:Detectors:

Pragma version^0.8.20 (MindX.sol#7) necessitates a version too recent to

↪→ be trusted. Consider deploying with 0.8.18.

Pragma version^0.8.20 (MindX.sol#38) necessitates a version too recent

↪→ to be trusted. Consider deploying with 0.8.18.

Pragma version^0.8.0 (MindX.sol#138) allows old versions

solc-0.8.20 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #incorrect-versions-of-solidity

INFO:Detectors:

Low level call in Address.sendValue(address,uint256) (MindX.sol#320-331)

↪→ :

- (success) = recipient.call{value: amount}() (MindX.sol#329)

Low level call in Address.functionCallWithValue(address,bytes,uint256,

↪→ string) (MindX.sol#368-388):

- (success,returndata) = target.call{value: value}(data) (MindX.

↪→ sol#378-380)

Low level call in Address.functionStaticCall(address,bytes,string) (

↪→ MindX.sol#402-415):

- (success,returndata) = target.staticcall(data) (MindX.sol#407)

Low level call in Address.functionDelegateCall(address,bytes,string) (

↪→ MindX.sol#429-442):

- (success,returndata) = target.delegatecall(data) (MindX.sol

↪→ #434)

28

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #low-level-calls

INFO:Detectors:

Function IUniswapV2Router01.WETH() (MindX.sol#143) is not in mixedCase

Event Mindx.adding_isExcluded(address) (MindX.sol#718) is not in

↪→ CapWords

Event Mindx.removing_isExcluded(address) (MindX.sol#719) is not in

↪→ CapWords

Event Mindx.adding_automated(address) (MindX.sol#720) is not in CapWords

Event Mindx.removing_automated(address) (MindX.sol#721) is not in

↪→ CapWords

Event Mindx.enable_trading(bool) (MindX.sol#722) is not in CapWords

Event Mindx.tax_change(uint256,uint256) (MindX.sol#723) is not in

↪→ CapWords

Event Mindx.tax_Treasury(address,address) (MindX.sol#724) is not in

↪→ CapWords

Event Mindx.tax_fee(uint256,uint256) (MindX.sol#725) is not in CapWords

Parameter Mindx.enableTrading(bool)._status (MindX.sol#775) is not in

↪→ mixedCase

Parameter Mindx.taxChange(uint256,uint256)._b (MindX.sol#781) is not in

↪→ mixedCase

Parameter Mindx.taxChange(uint256,uint256)._s (MindX.sol#781) is not in

↪→ mixedCase

Parameter Mindx.divAdress(address,address)._tr (MindX.sol#802) is not in

↪→ mixedCase

Parameter Mindx.divAdress(address,address)._to (MindX.sol#802) is not in

↪→ mixedCase

Function Mindx.adding_isExcludedMaxTransactionAmount(address) (MindX.sol

↪→ #919-925) is not in mixedCase

Parameter Mindx.adding_isExcludedMaxTransactionAmount(address)._a (MindX

↪→ .sol#919) is not in mixedCase

Function Mindx.removing_isExcludedMaxTransactionAmount(address) (MindX.

↪→ sol#927-930) is not in mixedCase

29

Parameter Mindx.removing_isExcludedMaxTransactionAmount(address)._a (

↪→ MindX.sol#927) is not in mixedCase

Function Mindx.adding_automatedMarketMakerPairs(address) (MindX.sol

↪→ #932-935) is not in mixedCase

Parameter Mindx.adding_automatedMarketMakerPairs(address)._a (MindX.sol

↪→ #932) is not in mixedCase

Function Mindx.removing_automatedMarketMakerPairs(address) (MindX.sol

↪→ #937-940) is not in mixedCase

Parameter Mindx.removing_automatedMarketMakerPairs(address)._a (MindX.

↪→ sol#937) is not in mixedCase

Function Mindx.BurnDevToken(uint256) (MindX.sol#946-948) is not in

↪→ mixedCase

Parameter Mindx.setSwapAndLiquifyEnabled(bool)._enabled (MindX.sol#950)

↪→ is not in mixedCase

Variable Mindx._isExcludedMaxTransactionAmount (MindX.sol#681) is not in

↪→ mixedCase

Variable Mindx._automatedMarketMaker (MindX.sol#682) is not in mixedCase

Variable Mindx.RevenueShare (MindX.sol#685) is not in mixedCase

Variable Mindx.OwnerShare (MindX.sol#686) is not in mixedCase

Variable Mindx.initial_tax (MindX.sol#689) is not in mixedCase

Variable Mindx.second_buy_limit (MindX.sol#695) is not in mixedCase

Variable Mindx.initial_inject_timestamp (MindX.sol#696) is not in

↪→ mixedCase

Variable Mindx.TechTeam (MindX.sol#697) is not in mixedCase

Variable Mindx.TreasuryRevenue (MindX.sol#698) is not in mixedCase

Variable Mindx.TreasuryOwner (MindX.sol#699) is not in mixedCase

Variable Mindx.Marketing (MindX.sol#700) is not in mixedCase

Variable Mindx.CEX (MindX.sol#701) is not in mixedCase

Variable Mindx.PreSale (MindX.sol#702) is not in mixedCase

Variable Mindx.CReward (MindX.sol#703) is not in mixedCase

Variable Mindx.Surplus (MindX.sol#704) is not in mixedCase

Variable Mindx._tierTimestamp (MindX.sol#706) is not in mixedCase

Variable Mindx._transactorLastblock (MindX.sol#708) is not in mixedCase

30

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #conformance-to-solidity-naming-conventions

INFO:Detectors:

Reentrancy in Mindx._transfer(address,address,uint256) (MindX.sol

↪→ #815-880):

External calls:

- swapAndReward(contractTokenBalance) (MindX.sol#833)

- address(TreasuryOwner).transfer(newBalance) (MindX.sol

↪→ #895)

State variables written after the call(s):

- super._transfer(from,TreasuryOwner,(amount / 100) * initial_tax

↪→) (MindX.sol#865)

- _balances[sender] = senderBalance - amount (MindX.sol

↪→ #616)

- _balances[recipient] += amount (MindX.sol#618)

- super._transfer(from,address(this),Taxation) (MindX.sol#873)

- _balances[sender] = senderBalance - amount (MindX.sol

↪→ #616)

- _balances[recipient] += amount (MindX.sol#618)

- super._transfer(from,to,amount - Taxation) (MindX.sol#879)

- _balances[sender] = senderBalance - amount (MindX.sol

↪→ #616)

- _balances[recipient] += amount (MindX.sol#618)

- _tierTimestamp[to] = block.timestamp (MindX.sol#876)

- _tierTimestamp[from] = block.timestamp (MindX.sol#877)

- _transactorLastblock[tx.origin] = block.number (MindX.sol#867)

- isBot[from] = true (MindX.sol#858)

- isBot[to] = true (MindX.sol#860)

Event emitted after the call(s):

- Transfer(sender,recipient,amount) (MindX.sol#620)

- super._transfer(from,to,amount - Taxation) (MindX.sol

↪→ #879)

- Transfer(sender,recipient,amount) (MindX.sol#620)

31

- super._transfer(from,address(this),Taxation) (MindX.sol

↪→ #873)

- Transfer(sender,recipient,amount) (MindX.sol#620)

- super._transfer(from,TreasuryOwner,(amount / 100) *

↪→ initial_tax) (MindX.sol#865)

Reentrancy in Mindx.swapAndReward(uint256) (MindX.sol#882-901):

External calls:

- address(TreasuryOwner).transfer(newBalance) (MindX.sol#895)

State variables written after the call(s):

- super._transfer(address(this),TreasuryRevenue,_revenue_share) (

↪→ MindX.sol#898)

- _balances[sender] = senderBalance - amount (MindX.sol

↪→ #616)

- _balances[recipient] += amount (MindX.sol#618)

- super._transfer(address(this),TreasuryOwner,_owner_share) (

↪→ MindX.sol#899)

- _balances[sender] = senderBalance - amount (MindX.sol

↪→ #616)

- _balances[recipient] += amount (MindX.sol#618)

Event emitted after the call(s):

- Transfer(sender,recipient,amount) (MindX.sol#620)

- super._transfer(address(this),TreasuryOwner,_owner_share

↪→) (MindX.sol#899)

- Transfer(sender,recipient,amount) (MindX.sol#620)

- super._transfer(address(this),TreasuryRevenue,

↪→ _revenue_share) (MindX.sol#898)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #reentrancy-vulnerabilities-4

INFO:Detectors:

Variable IUniswapV2Router01.addLiquidity(address,address,uint256,uint256

↪→ ,uint256,uint256,address,uint256).amountADesired (MindX.sol#148)

↪→ is too similar to IUniswapV2Router01.addLiquidity(address,address

↪→ ,uint256,uint256,uint256,uint256,address,uint256).amountBDesired

↪→ (MindX.sol#149)

32

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #variable-names-too-similar

INFO:Detectors:

Mindx.swapping (MindX.sol#687) is never used in Mindx (MindX.sol

↪→ #678-954)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #unused-state-variable

INFO:Detectors:

Mindx.OwnerShare (MindX.sol#686) should be constant

Mindx.RevenueShare (MindX.sol#685) should be constant

Mindx.initial_tax (MindX.sol#689) should be constant

Mindx.numTokensSellToShareRevenue (MindX.sol#694) should be constant

Mindx.second_buy_limit (MindX.sol#695) should be constant

Mindx.swapping (MindX.sol#687) should be constant

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #state-variables-that-could-be-declared-constant

INFO:Detectors:

Mindx.uniswapV2Router (MindX.sol#693) should be immutable

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

↪→ #state-variables-that-could-be-declared-immutable

INFO:Slither:. analyzed (9 contracts with 94 detectors), 96 result(s)

↪→ found

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

33

6 Conclusion

We examined the design and implementation of MindX in this audit and found several

issues of various severities. We advise mindx team to implement the recommendations

contained in all 13 of our findings to further enhance the code’s security. It is of utmost

priority to start by addressing the most severe exploit discovered by the auditors then

followed by the remaining exploits, and finally we will be conducting a re-audit following

the implementation of the remediation plan contained in this report.

We would much appreciate any constructive feedback or suggestions regarding our

methodology, audit findings, or potential scope gaps in this report.

34

For a Smart Contract Audit, contact us at contact@blockhat.io

35

mailto:contact@blockhat.io

	Introduction
	About MindX
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	MindX.sol
	Potential Locking of ETH in Contract [CRITICAL]
	Bot Detection Mechanism [HIGH]
	Taxation Calculation on Bot Transactions [HIGH]
	Incomplete Bot Detection Condition [HIGH]
	Centralization of Critical Functional Controls [MEDIUM]
	Function Naming Clarity for enableTrading [MEDIUM]
	Error Handling in taxChange Function [MEDIUM]
	Optimizing Share Distribution Calculations [LOW]
	Mint vs Transfer for Initial Distribution [LOW]
	Improving Code Readability in Token Minting [INFORMATIONAL]
	Utilization of Total Supply Variable [INFORMATIONAL]
	Naming Clarity [INFORMATIONAL]
	Redundant Timestamp Assignment [INFORMATIONAL]

	Best Practices
	Improving Numeric Constants Representation
	Unnecessary Initialization of Taxation Variable

	Static Analysis (Slither)
	Conclusion

