» BLOCKHAT

SECURITY

Clixpesa

Smart Contract Security Audit

Prepared by BlockHat
September 19", 2023 - September 29'", 2023
BlockHat.io
contact@blockhat.io

https://blockhat.io
mailto:contact@blockhat.io

Document Properties

Client Clixpesa Solutions Ltd
Version 1.0
Classification Public

Scope

Repository

Commit Hash

ee/main

https://github.com/clixpesa/smart-contracts/tr | 6ce256d3171aba2fc2ee55312c8064596d879962

Re-Audit Files

Repository Commit Hash
https://github.com/clixpesa/smart-contracts/tr | f753f7009a19188e12a78d780446d9ch65f7ab78
ee/main
Contacts
COMPANY CONTACT
BlockHat contact@blockhat.io

mailto:contact@blockhat.io

Contents

1 Introduction 5
11 AboutClixpesa e 5

1.2 Approach &Methodology 6
121 RiskMethodology 7

2 Findings Overview 8
21 SUMMArY . . . e 8
22 KeyFindings e 8

3 Finding Details 1
A Rosca.ssol e 1
Al Potential Reentrancy Attack in payoutPot Function_ T |

A.2 Transfer Amount Might Be Zero_ 12

A3 Pot Funding Exceeding Goal- 14

A4 Overfunding Vulnerability [HIGH] 15

A5 MissingUpdate ofisPotted [MEDIUM] 16

Ab NoMemberLimit [MEDIUM] 16

A7 RecipientandCaller Overlap [MEDIUM] 17

A8 Floating Pragma- 19

A9 Reliance on External Contracts [INFORMATIONAL] 20

B RoscaSpaces.ssol 21

B.1 No Removal or Deletion Mechanism [MEDIUM] 21

B2 LackoflnputValidation[JEOW]| 21

B.3 Potential Scalability Issue with Data Retrieval- 22

B.4 No EmergencyShutdown- 23

B.5 Lack of Input Validation for Array Access - 24

B.6 NoRateLimiting [JEOW] 25

B.7 Redundant Data Structures- 25

B.8 Floating Pragma- 26

B.9 Lack of Access Control [INFORMATIONAL] 27

C Loansinterestssol. 28

C.1 Lack of Input Validation [MEDIUM] 28

C.2 Floating Pragma- 29

PersonalSpaces.sol

D1 TokenAddress Update Risk |[ERINGEE
D.2 Potential reentrancy attack_

D.3 Missing Allowance Check before Token Transfer-
D.4 Logic Bug: Non-owners can’t fund personal spaces -
D.5 Nowaytoretrieve ERC20tokensifsentdirectly [MEDIUM]
D.6 Nowaytodelete personalspaces [MEDIUM]
D.7 Potential Revert on Already Withdrawn Personal Space [MEDIUM]

D.8 Redundant Goal Amount Check-
D.9 Ambiguous Function Return-
D.10 LackofInput Length Check-
D.11 Duplicate storage and checks for space IDs -

D.12 Floating Pragma-

P2PLoans.sol
E.1 Borrower Loan Repayment Guarantee_
E.2 Missing Token Address Check-
E.3 Missing Allowance Check-
E.4 Unsupported Ether Transactions [MEDIUM]
E.5 Floating Pragma-
E.6 Unused Variablesin Contract-
E.7 Error Message Inconsistency-
CalcTime.sol e
F.1 Potential Infinite Loopin _getDayNo and _getOcurranceNo- .

F2 LackofInput Validation [[EOW]|
F.3 Misleading Comments -
F4 Useofblocktimestamp [[EOW]

Best Practices

BP.1 MisleadingTransferMessage
BP.2 ContractUpgradability
BP.3 Limited Documentation: LoansiInteresr.

Static Analysis (Slither)

Conclusion

35
35
95
56

57

84

1 Introduction

Clixpesa Solutions Ltd engaged BlockHat to conduct a security assessment on the Clix-
pesa beginning on September 19t", 2023 and ending September 29", 2023. In this report,
we detailour methodical approachto evaluate potential security issues associated with the
implementation of smart contracts, by exposing possible semantic discrepancies between
the smart contract code and design document, and by recommending additional ideas to
optimize the existing code. Our findings indicate that the current version of smart contracts
can still be enhanced further due to the presence of many security and performance con-
cerns.
This document summarizes the findings of our audit.

1.1 About Clixpesa

- Clixpesa Spaces Clixpesa spacesis basically a savings feature where users can save
for personal goals, participate in saving challenges and also save in groups through
RoSCAs. With Rotating Savings & Credit Associations (RoSCAs) users can come to-
gether as a group to help each other stay financially resilient. Users contribute to a
pot, and the target amount goes to one of the users in a particular order until every-
one hasreceived apotandthe cycle starts over. This utility commonly known in Kenya
as Chamas, helps many raise funds for otherwise big financial goals such as busi-
ness capital or bills. Within the RoSCAs members can also ask for financial support
for financial needs outside of the pot allocations. Users can create a RoSCA easily by
inviting their friends through their phone numbers. Once the RoSCAs is created they
canselecttheiradmins and around can be started. Funds disbursement happens au-
tomatically once a pot deadline is reached. Signatories to the RoSCA funds are ran-
domised by the platformin order to give all members equal control over their funds.

- Clixpesa P2P Lending: 68% of loans in the alternative lending market in Africa are
P2P loans. With Clixpesa P2P users are able to offer or request loans from each
other at their own terms. Clixpesa Finance helps with monitoring the Credit scores
of users and only recommending matches to users in order to minimize the risk of
default among users. This feature is very useful for those who survive on day loans
to run small businesses for purposes such as inventory purchases. This product
greatly reduces the cost of loans as it democratises lending and also opens other

5

earning avenues for users through interest.

Issuer Clixpesa Solutions Ltd
Website www.clixpesa.com
Type Solidity Smart Contract
Audit Method Whitebox

1.2 Approach & Methodology

BlockHat used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

www.clixpesa.com

1.21 Risk Methodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

‘6 High
g Medium
— Low Medium
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The followingis a synopsis of our conclusions from our analysis of the Clixpesa implemen-
tation. During the first part of our audit, we examine the smart contract source code and run
the codebase via a static code analyzer. The objective here is to find known coding prob-
lems statically and then manually check (reject or confirm) issues highlighted by the tool.
Additionally, we check business logics, system processes, and DeFi-related components
manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include 5
critical-severity, high-severity, medium-severity, 20 low-severity,
informational-severity vulnerabilities.

Vulnerabilities Severity Status
Potential Reentrancy Attack in payoutPot Function Fixed
Transfer Amount Might Be Zero Fixed
Token Address Update Risk Fixed
Potential reentrancy attack Fixed
Borrower Loan Repayment Guarantee Not Fixed
Pot Funding Exceeding Goal HIGH Fixed
Overfunding Vulnerability HIGH Fixed
Missing Allowance Check before Token Transfer HIGH Fixed
Logic Bug: Non-owners can't fund personal spaces HIGH Fixed
Missing Token Address Check HIGH Fixed
Missing Allowance Check HIGH Fixed
Potential Infinite Loop in _getDayNo and HIGH Fixed
_getOcurranceNo
Missing Update of isPotted MEDIUM Fixed

No Member Limit MEDIUM Fixed
Recipient and Caller Overlap MEDIUM Fixed

No Removal or Deletion Mechanism MEDIUM Fixed

Lack of Input Validation MEDIUM Fixed

No way to retrieve ERC20 tokens if sent directly MEDIUM Not Fixed

No way to delete personal spaces MEDIUM Not Fixed
Potential Revert on Already Withdrawn Personal MEDIUM Not Fixed

Space

Unsupported Ether Transactions MEDIUM Fixed

Floating Pragma Fixed

Lack of Input Validation Fixed
Potential Scalability Issue with Data Retrieval Fixed

No Emergency Shutdown Acknowledged
Lack of Input Validation for Array Access Fixed

No Rate Limiting Fixed
Redundant Data Structures Acknowledged
Floating Pragma Fixed

Floating Pragma Fixed
Redundant Goal Amount Check Fixed

Ambiguous Function Return Fixed

Lack of Input Length Check Fixed
Duplicate storage and checks for space IDs Not Fixed
Floating Pragma Fixed

Floating Pragma Fixed

Unused Variablesin Contract Not Fixed
Error Message Inconsistency Fixed

Lack of Input Validation Fixed
Misleading Comments Fixed

Use of block.timestamp Acknowledged
Reliance on External Contracts INFORMATIONAL | Fixed

Lack of Access Control INFORMATIONAL | Acknowledged

10

3 Finding Details

A Rosca.sol

A1 Potential Reentrancy Attack in payoutPot

Function_

Description:

The payoutPot function involves an external call to an unknown ERC-20 token contract us-
ing the transfer method. Given that the transfer function of an ERC-20 token can be over-
ridden by a malicious token implementation, this opens the door for a potential reentrancy
attack. State variables such as RSD.PS and RSD.currentPotBalance are updated after the
external call, which can be exploited if the token’s transfer method is maliciously imple-
mented to re-enter the payoutPot function.

Code:

l

Risk Level:

Likelihood - 3
Impact -5

Recommendation:

Implement the checks-effects-interactions pattern to mitigate reentrancy attacks. Update
state variables before calling external contracts. Specifically, move the state-modifying
lines above the transfer line to ensure that state is updated before any externalinteraction.

Status - Fixed

A.2 Transfer Amount Might Be Zero _

Description:

Inthe payoutPot function of the Rosca.sol contract, the transfer amountis calculated as the
difference between currentPD.potBalance and RSD.RD.goalAmount. Given that a previous
require statement ensures that currentPD.potBalance is equalto RSD.RD.goalAmount, the
transfer amount will always be zero. This logic suggests that even though the pot is sup-
posed to pay out, no actual funds are being transferred.

12

Risk Level:

Likelihood -5
Impact - 4

Recommendation:

Reassessthe logic for calculating the transfer amount. If the intention is to transfer the en-
tire currentPD.potBalance, then the subtraction operation is unnecessary. Directly trans-
fer the currentPD.potBalance instead.

Status - Fixed

The smart contract checks if currentPD.potBalance is greater than, equal to, or less than
RSD.RD.goalAmount and calculates the dueAmount to be transferred accordingly.

A.3 PotFunding Exceeding Goal [HIGH]

Description:

The contributeToPot function allows for exact contributions that match the goalAmount to
close the pot. There is no mechanism to prevent overfunding or to handle excess funds.

Code:

Listing 3: Rosca.sol

m if (currentPD.potBalance == RSD.RD.goalAmount) {
172 RSD.PS = PotState.isClosed;

173 }

Risk Level:

Likelihood -2

Impact-5

14

Recommendation:

Implementlogicto prevent contributionsifitwould cause the potto exceedthe goalAmount.
Alternatively, handle refunds for excess contributions.

Status - Fixed

The developer has implemented a mechanism in the contributeToPot function to prevent
overfunding and to handle excess funds.

A.4 Overfunding Vulnerability [[HIGH]

Description:

In payoutPot function The current validation checks that the currentPD.potBalance is fully
funded by ensuringitis equal to RSD.RD.goalAmount. However, this condition does not ac-
count for cases where the pot might be overfunded, i.e., if currentPD.potBalance is greater
than RSD.RD.goalAmount.

Code:

Listing 4: Rosca.sol

183 require(
184 currentPD.potBalance == RSD.RD.goalAmount,
185 "Pot is not fully funded"
186) 5
Risk Level:
Likelihood -2
Impact-5

Recommendation:

Modify the condition to ensure that currentPD.potBalance is not greater than
RSD.RD.goalAmount. You could implement an additional require statement to specifically

15

check for overfunding, or change the current condition to also handle this scenario.

Status - Fixed

The developer handles the case when the pot is overfunded by tracking the excess amount
and ensuring only the goal amount is paid out.

A.5 Missing Update of isPotted [MEDIUM]

Description:

When a pot is paid out using payoutPot, there’s no logic updating the isPotted status for the
member who received the payout.

Risk Level:

Likelihood - 3
Impact - 3

Recommendation:

Ensure the member’'s isPotted status is updated to true after they receive a payout.

Status - Fixed

the developer ensures that the isPotted status of the corresponding member is appropri-
ately settotrue

A.6 NoMemberLimit [MEDIUM]

Description:

The comment suggests a maximum of 255 members, but there’s no logic in joinRosca en-
forcing this limit.

16

Code:

Listing 5: Rosca.sol

82 mapping(address => uint256) memberIndex; //maz members 255

Risk Level:

Likelihood - 2
Impact-5

Recommendation:

If there's a need to limit the number of members, add a check in joinRosca to ensure the
RSD.members.length doesn’t exceed the desired limit.

Status - Fixed

Listing 6: Rosca.sol

g2 require(RSD.members.length <= 255, "Rosca is full"); //max 255 members

A.7 Recipientand Caller Overlap [MEDIUM]

Description:

In the payoutPot function of the Rosca.sol contract, there's a potential confusion arising
from the overlap between the caller (msg.sender) and the recipient of the funds
(currentPD.potOwner). The function’s logic ensures that the caller must be the owner of
the current pot by checking if RSD.currentPotld == memberindex[msg.sender]. However,
the actual transfer of funds happens to the address stored in currentPD.potOwner. Even
though the requirement ensures they should be the same, this overlap can be confusing
for developers or auditors who are reviewing the code.

17

109 emit PotPayedOut (currentPD.potOwner, dueAmount) ;

o _createPot();

m }

Risk Level:

Likelihood -2
Impact - 3

Recommendation:

- Consider simplifying the function by directly using msg.sender asthe recipientfor the
transfer, since the requirement already ensures that the caller must be the owner of
the current pot.

- Add clarifying comments in the code to explain the relationship between msg.sender
and currentPD.potOwner, stating that they should always be the same at this pointin
the code.

- Review and ensure other parts of the contract don't introduce inconsistencies
between msg.sender and currentPD.potOwner.

Status - Fixed

A.8 Floating Pragma -

Description:

The contract makes use of the floating-point pragma 0.8.19. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionallybe deployed usinganother pragma, whichinsome casesmaybe anobsolete
version, that may introduce issues to the contract system.

Code:

19

Listing 8: Rosca.sol

s pragma solidity ~0.8.19;

Risk Level:

Likelihood -1
Impact - 2

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

Status - Fixed

A.9 Reliance on External Contracts [INFORMATIONAL]

Description:

The contractrelies on an external contract CalcTime for date and time calculations. If there
are issues or vulnerabilities in CalcTime, they might impact this contract.

Code:

Listing 9: Rosca.sol

n import "./CalcTime.sol";

Risk Level:

Likelihood -1
Impact -1

20

Recommendation:

Ensure that the CalcTime contract is reviewed and tested extensively. Additionally, con-
sider adding the ability to update the address of this contract (with appropriate access con-
trols) in case it ever needs to be upgraded or replaced.

Status - Fixed

B RoscaSpaces.sol

B.1 No Removal or Deletion Mechanism [MEDIUM]

Description:

The contract relies on an external contract CalcTime for date and time calculations. If there
are issues or vulnerabilities in CalcTime, they might impact this contract.

Risk Level;

Likelihood -2
Impact - 3

Recommendation:

Implementamechanismtosafelyend, remove, orarchiveaRoSCA.Ensurethatappropriate
access controls are in place, and funds (if any) are safely returned to participants before
deletion.

Status - Fixed

B.2 Lackof Input Validation -

Description:

There’s no validation to ensure the provided _roscaAddress is associated with the provided

_owner.

21

Risk Level:

Likelihood - 2
Impact - 2

Recommendation:

Addcheckstovalidatethatthe provided _roscaAddressactuallybelongstothe _owner. This
will prevent potential misinformation or errors.

Status - Fixed

B.3 Potential Scalability Issue with Data Retrieval [[EOW]|

Description:

The getRoscaSpaces function returns the entire roscaSpaces array. As the number of
RoSCAs in this array grows, retrieving and processing the entire array may become
inefficient. While view functions don’'t consume gas, the sheer volume of data returned can
pose performance issues or even timeouts for dApps or services interfacing with this
function.

()
o
=3
®

2

N

4t return roscaSpaces;

45 }

Risk Level:
Likelihood -1
Impact - 2
Recommendation:

To improve scalability and efficiency, consider implementing pagination or introducing a
mechanism to limit the number of returned results. This approach will help to ensure that
the function remains performant as the number of RoSCAs increases.

Status - Fixed

B.4 No Emergency Shutdown -

Description:

The contract doesn’t have a way to stop its operations in the event of a detected bug or vul-
nerability.

Risk Level:

Likelihood -1
Impact - 3

Recommendation:

Consider adding a "circuit breaker” or "pause” functionality, controlled by the owner, to halt
certain contract functions in emergencies.

23

Status - Acknowledged

B.5 Lackof Input Validation for Array Access -

Description:

There’s no validation to ensure that the index accessed within myRoscas[_owner] exists.
This can lead to out-of-bounds errors.

Code:

Risk Level:

Likelihood -1
Impact - 2

Recommendation:

Always check that an array index is within bounds before accessing it. Implement checks
to ensure the provided index or derived index is valid.

24

Status - Fixed

B.6 No Rate Limiting [[EOW]|

Description:

There’s no rate limiting on the creation of RoSCAs. This might expose the contract to
potential spamming, where a malicious actor could repeatedly create RoSCAs, leading to
blockchain bloat.

Risk Level:
Likelihood -1

Impact - 2

Recommendation:

Consider introducing rate-limiting mechanisms or deploying a small fee for creating a
RoSCA to prevent spam.

Status - Fixed

The developer add "max 10 roscaSpaces per user” check

B.7 Redundant Data Structures-

Description:

There seems to be redundancy in how data is stored. While roscaSpacesindex tracks the
index of a specific RoOSCA inthe roscaSpaces array, myRoscasldx does a similar job for the
user-specific ROSCAs. Redundant data structures increase the complexity and potential
for errors and also use more gas for storage and retrieval.

Code:

25

Listing 13: RoscaSpaces.sol

” mapping(address => uint256) roscaSpacesIndex;

18 mapping(address => Roscal]) myRoscas;

19 mapping(address => mapping(address => uint256)) myRoscasIdx;
Risk Level:
Likelihood -1
Impact - 2

Recommendation:

Consider simplifying the data structure. One approach could be to use asingle mapping that
points an address directly to its Rosca details, and if user-specific tracking is essential, an-
other mapping that lists RoSCA addresses for a particular user.

Status - Acknowledged

B.8 Floating Pragma -

Description:

The contract makes use of the floating-point pragma 0.8.19. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

Code:

Listing 14: RoscaSpaces.sol

s pragma solidity ~0.8.19;

26

Risk Level:

Likelihood -1
Impact - 2

Recommendation:

Consider locking the pragma version. Itis advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Status - Fixed

B.9 LackofAccess Control_

Description:

The createRoscaSpace functionis publicand doesn’t have any access controls. This means
that any user can call this function and create new RoSCAs without any restrictions.

Code:

Recommendation:

Implement access controls such as a modifier to restrict the creation of RoSCAs only to
specificaddresses, ifthat'sintended. Alternatively, if the design requires any user to create
aRoSCA, thenensure other checks and balances arein place to avoid misuse or spamming.

Status - Acknowledged

C Loansinterest.sol

C.1 LackoflInputValidation _

Description:

The functions _getinterest and _getNewBalance accept loan amount, rate, and duration as
inputs. However, there is no validation for these input values. Incorrect or extreme values
can lead to unexpected results.

Code:

28

Risk Level:

Likelihood -2
Impact -3

Recommendation:

Introduce validation checks. Forinstance, ensure that the rate is within reasonable bounds
(e.g., between 0 and some maximum possible value). Duration should also be validated to
ensure itrepresents a feasible loan term.

Status - Fixed

C.2 FloatingPragma -

Description:

The contract makes use of the floating-point pragma 0.8.19. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not

29

unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

Code:

Listing 17: Loansinterest.sol

s pragma solidity ~0.8.19;

Risk Level:
Likelihood -1
Impact - 2
Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

Status - Fixed

D PersonalSpaces.sol

D.1 Token Address Update Risk_

Description:

The function allows updating various details of a personal space, including the token ad-
dress (_SD.token). Ifthe token addressis changed after funds have been added, there could
be a risk of funds getting stuck or being inaccessible since the withdrawal function might
only consider the latest token set.

Code:

30

Listing 18: PersonalSpaces.sol

138 function updatePersonalSpace(SpaceDetails memory _SD) external {

139 require(msg.sender == _SD.owner, "Must be owner");

140 require(personalSpaceIndex[_SD.spaceld] != 0, "SpaceIld does not
— exist");

141 require (

142 myPersonalSpaceldx[msg.sender] [_SD.spaceld] != 0,

143 "Spaceld does not exist"

144)

145 require(_SD.owner != address(0), "Owner cannot be O address");

146 require(_SD.token != IERC20(address(0)), "Token cannot be O

— address");

Risk Level:

Likelihood -5
Impact - 3

Recommendation:

Avoid allowing the update of the token address once it has been set or ensure there’s a
mechanism to track and withdraw funds from all tokens ever associated with a personal
space.

Status - Fixed

D.2 Potentialreentrancy attack_

Description:

The function _withdrawFromPersonalSpace seems to have a sequence where tokens are
transferred out (_PD.SD.token.transfer(msg.sender, _amount)) before the contract’s inter-
nal balance is updated. This order of operations can potentially expose the contract to a
reentrancy attack if the token contract’s transfer function isn'timplemented safely.

31

Code:

Listing 19: PersonalSpaces.sol

27 require(_PD.SD.token.transfer(msg.sender, _amount), "Transfer failed");

Risk Level:

Likelihood -3
Impact-5

Recommendation:

To mitigate the risk of reentrancy, you should follow the "Checks-Effects-Interactions” pat-
tern. First, make all the necessary checks (e.g., validating inputs or verifying conditions).
Second, change the state. Finally, interact with external contracts. In this specific scenario,
you should adjust the contract such that it decreases the balance (or makes the necessary
state changes) before proceeding with the transfer of tokens.

Status - Fixed

D.3 Missing Allowance Check before Token Transfer [HIGH]

Description:

The line _PD.SD.token.transferFrom(msg.sender, address(this), _amount) attempts to
transfer tokens from the sender’s address to the contract’s address. However, there’s no
preceding check to ensure that the contract has the necessary allowance to transfer the
specified _amount of tokens from the sender’s address.

Code:

Listing 20: PersonalSpaces.sol

182 require(
183 _PD.SS.currentFundState == FundsState.isFundable,
184 "Funding is not allowed / Fully funded"

32

Risk Level:

Likelihood - 4
Impact - 4

Recommendation:

Before attempting to transfer tokens, add a check to ensure the contract has been granted
the necessary allowance

33

Status - Fixed

D.4 Logic Bug: Non-owners cant fund personal spaces
[HIGH]

Description:

In the fundPersonalSpace function, the contract checks if the personal space ID exists for
both the contract-wide list (personalSpacelndex) and the user-specific list
(myPersonalSpaceldx[msg.sender]). This check incorrectly allows only the owner of the
space to fund a personal space. Now, this means if Alice created a personal space with
_spaceld equal to "1234”, then only Alice (the owner of that space) can fund it because the
mapping myPersonalSpaceldx[Alice’s address]["1234"] will have a non-zero value.

If Bob tries to fund Alice’s personal space with _spaceld "1234”, the mapping myPerson-
alSpaceldx[Bob’s address][1234"] will be 0 (assuming Bob never created a personal space
with the same ID), and the transaction will revert.

If the intention of the project is that funding should only be done by the owner of the per-
sonal space, then this issue becomes informational and should be acknowledged by the
team.

Code:

Listing 21: PersonalSpaces.sol

170 function fundPersonalSpace(

m string memory _spaceld,

172 uint256 _amount

173) external {

174 require(personalSpacelIndex[_spaceId] != 0, "Spaceld does not
— exist");

175 require(

6 myPersonalSpaceldx [msg.sender] [_spaceId] != 0,

17 "Spaceld does not exist"

178)

179 PersonalDetails memory _PD = allPersonalSpaces[

34

Risk Level:

Likelihood - 3
Impact -3

Recommendation:

Remove the check myPersonalSpaceldx[msg.sender][_spaceld] != 0 from the fundPerson-
alSpace function. Only the existence of the space in personalSpacelndex should be vali-
dated.

Status - Not Fixed

D.5 No way to retrieve ERC20 tokens if sent directly

Description:

If someone mistakenly transfers ERC20 tokens directly to the contract’s address (rather
than using the fundPersonalSpace method), these tokens will be locked with no way to re-
trieve them.

36

Risk Level:

Likelihood - 2
Impact -3

Recommendation:

Implement afunction that allows the contract owner (or a specific privileged role) to trans-
ferany ERC20 token from the contract, in case they are mistakenly sent.

Status - Not Fixed

D.6 Nowaytodelete personal spaces [MEDIUM]

Description:

While there’s an event called DeletedPersonalSpace, there’s no function that allows a user
to permanently delete a personal space, which means the data will stay in the contract for-
ever, even ifit'sinactive.

Risk Level:
Likelihood -2
Impact - 3

Recommendation:

Consider adding afunctionto allow the deletion of personal spaces and free up storage, po-
tentially giving a gas refund.

37

Status - Not Fixed

D.7 Potential Revert on Already Withdrawn Personal

Space [MEDIUM]

Description:

The function closePersonalSpace seems to call _withdrawFromPersonalSpace to
withdraw the current balance of the personal space. If the personal space has already
been withdrawn, invoking this function might cause a revert.

Code:

Risk Level:

Likelihood -3
Impact - 3

38

Recommendation:

Implement a check to ensure that the personal space hasn't been withdrawn before pro-
ceeding. If the personal space’s balance is already zero or if its state indicates that it has
been withdrawn, the function should gracefully handle the situation without reverting.

Status - Not Fixed

D.8 Redundant Goal Amount Check-

Description:

The function fundPersonalSpace appears to have a redundant check for the goal amount.
The line require(_PD.SD.goalAmount > 0, "Goal must be greater than 0”); checks if the goal
amount is greater than zero. However, this same check seems to have been performed
when the personal space was initially created, making this check redundant during the
funding process.

Code:

39

Risk Level:
Likelihood -2

Impact - 2
Recommendation:

If the goal amount is indeed validated during the creation of the personal space, you can
safely remove the redundant check from the fundPersonalSpace function to optimize gas
usage.

Status - Fixed

D.9 Ambiguous Function Return -

Description:

The functiondoesn’texplicitly returntrueif both conditions are not met. Althoughin Solidity,
not having a return value will return the default value (in this case false for a boolean),

Code:

40

Risk Level:

Likelihood -2
Impact - 2

Recommendation:

it's better for readability and assurance to explicitly return true at the end.

Status - Fixed

D.10 Lack of Input Length Check [[EOW]

Description:

The contract's createPersonalSpace function accepts a SpaceDetails struct as an
argument. Within this struct, fields like spaceName and spaceld might be prone to
unnecessarily large inputs. By not enforcing a maximum length on these fields, a
malicious actor might submit exceptionally long strings with the intent of consuming more
gas than a typical operation would. This could lead to increased transaction costs and
could be used as a form of Denial of Service (DoS) attack, making the function prohibitively
expensive to call.

Code:

Listing 25: PersonalSpaces.sol

65 function createPersonalSpace(SpaceDetails memory _SD) external {

Risk Level:

Likelihood -1
Impact - 2

41

Recommendation:

It'sadvisabletoimplementinputvalidation checks, especially for string lengths. For critical
fieldslike spaceNameandspaceld, defineareasonable maximum length and enforce thisin
the contract logic. This would ensure that the provided inputs won't consume an excessive
amount of gas and helps prevent potential DoS vectors where malicious actors attempt to
inflate transaction costs.

Status - Fixed

D.11 Duplicate storage and checks for space IDs -

Description:

The contract uses both allPersonalSpaces and myPersonalSpaces mappings to store de-
tails of personal spaces. This redundancy might lead to increased gas costs and can be a
source of bugs.

Code:

Listing 26: PersonalSpaces.sol

87 allPersonalSpaces.push(_PD);
88 personalSpaceIndex[_SD.spaceld] = allPersonalSpaces.length;
8 myPersonalSpaces [msg.sender] .push(_PD) ;
%0 myPersonalSpaceldx[msg.sender] [_SD.spaceld] = myPersonalSpaces[
9 msg.sender
92] .length;
Risk Level:
Likelihood -1
Impact -2

42

Recommendation:

Consider refactoring the contract to use a single mapping structure for storing personal
spaces. This can improve efficiency and reduce potential errors.

Status - Not Fixed

D.12 Floating Pragma-

Description:

The contract makes use of the floating-point pragma 0.8.19. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionally be deployed usinganother pragma, whichinsome cases maybeanobsolete
version, that may introduce issues to the contract system.

Code:

Listing 27: PersonalSpaces.sol

s pragma solidity ~0.8.19;

Risk Level:

Likelihood -1
Impact - 2

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

43

Status - Fixed
E P2PLoans.sol

E.1 Borrower Loan Repayment Guarantee _

Description:

The smart contract lacks mechanisms to ensure that borrowers will repay their loans.
Without such mechanisms, lenders face a high risk of defaults, making the platform less
attractive for lending.

Risk Level:
Likelihood -5
Impact - 4
Recommendation:

Implement collateral mechanisms where borrowers lock up a certain value (in tokens or
other assets) that can be claimed by lenders in case of defaults. Consider using third-party
credit scoring or linking loan repayment to real-world identities, although this might raise
privacy concerns and provide legal terms and conditions that borrowers must agree to be-
fore taking a loan, ensuring they understand their obligations and potential consequences
of defaulting.

Status - Not Fixed

E.2 Missing Token Address Check [HIGH]

Description:

There's no check to ensure LD.token is not the zero address.

Code:

4

Risk Level:

Likelihood - 4
Impact - 4

Recommendation:

Alwaysvalidate externalinputs. AddachecktoensurethatLD.tokenisnotthe zeroaddress
before proceeding.

45

Status - Fixed

E.3 Missing Allowance Check-

Description:

Before transferring tokens using the transferFrom method, there’s no check to ensure the
contract has the necessary allowance.

Code:

Risk Level:

Likelihood - 4
Impact - 4

Recommendation:

Before attempting a token transfer, always check the allowance set for the contract. If the
allowance is insufficient, revert the transaction with a clear error message.

Status - Fixed

E.4 Unsupported EtherTransactions_

Description:

Certain functions are marked as payable but don’t support ether transactions.

Code:

47

Listing 33: P2PLoans.sol

170 function repayLoan(
m uint256 _amount

172) external payable {

Risk Level:

Likelihood -3
Impact - 4

Recommendation:

Ifthe functionisn’tintended to accept ether,remove the payable modifier. Alternatively, add
logic to handle ether payments if they're supported.

Status - Fixed

E.5 Floating Pragma-

Description:

The contract makes use of the floating-point pragma 0.8.19. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

Code:

Listing 34: P2PLoans.sol
s pragma solidity ~0.8.19;

Risk Level;

Likelihood -1
Impact - 2

48

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Status - Fixed

E.6 UnusedVariablesin Contract-

Description:

The variablesisPrivate and bCreditScore inthe LoanDetails struct are not used throughout
the contract.

Code:

Listing 35: P2PLoans.sol

34 uint256 bCreditScore;

35 bool isPrivate;

Risk Level:

Likelihood -1
Impact - 2

Recommendation:

Ifthese variables have no purpose, consider removing them to simplify the contractand re-
duce gas costs. If they're intended for future use, make sure to document their purpose and
ensure their correctimplementation.

49

Status - Not Fixed

E.7 ErrorMessageInconsistency-

Description:

The error message for zero values is inconsistent, mentioning both "Principal=0 and Inter-
est=0".

Code:

Listing 36: P2PLoans.sol

109 require(LRD.LD.principal > 0, "Principal<0");
10 require(LRD.LD.interest > 0, "Interest<0");
Risk Level:
Likelihood - 2
Impact - 2

Recommendation:

Clarify and correct the error message to accurately reflect the error condition.
Status - Fixed

F CalcTime.sol

F.1 Potential Infinite Loop in _getDayNo and
_getOcurranceNo [HIGH]

Description:

Ifauserprovidesastringthatdoesn'tmatch anyofthe stringsin weekList orocurrancelist,
the function will run to completion without returning a value, reverting due to the lack of a

50

return statement.

Risk Level:
Likelihood -3
Impact - 4

Recommendation:

Add a default return statement or revert at the end of these functions, providing a message
indicating that the input string is not recognized.

Status - Fixed

F.2 LackoflnputValidation -

Description:

While there'sarequirement check for the year to be greater than or equalto 1970, there’s no
validation for month (should be 1-12) or day (depending on month and leap years, should be
1-28/29/30/31).

91

Risk Level:

Likelihood -2
Impact - 2

Recommendation:

Implement thorough validation checks for all function inputs where relevant to ensure the
data’s accuracy and prevent potential errors or unexpected behaviors.

92

Status - Fixed

F.3 Misleading Comments -

Description:

The comment suggests that "Monthly” corresponds to 30, but in the code, "Monthly” corre-
sponds to 28. This can mislead developers who rely on comments for clarity.

Code:

Listing 40: CalcTime.sol

80 /// @param _ocurrance 1. Daily 7. Weekly 30 Monthly

Risk Level:

Likelihood -1
Impact -1

Recommendation:

Ensure that comments are consistent with the actual code logic. Correct the misleading
comment to reflect the accurate mapping of strings to values.

Status - Fixed

F.4 Useofblock.timestamp -

Description:

The library makes use of the block.timestamp for time calculations. While
block.timestamp is generally reliable, miners can manipulate it to a certain degree
(usually within a 15-minute window). In scenarios where precision or certain time
guarantees are important, relying on block.timestamp can introduce vulnerabilities.

93

Risk Level:

Likelihood -1
Impact - 2

Recommendation:

Add a default return statement or revert at the end of these functions, providing a message
indicating that the input string is not recognized.

Status - Acknowledged

94

4 Best Practices

BP.1 Misleading Transfer Message

Description:

In the payoutPot function of the Rosca.sol contract, the error message associated with the
token transfer operation is generic and non-descriptive. The message "Transfer failed”
does not provide specific details or context as to why the transfer might have failed,
potentially causing confusion for developers or users interacting with the contract.

Code:

Listing 41: Rosca.sol.sol

157 require (

158 RSD.RD.token.transferFrom(msg.sender, address(this), _amount)
—

159 "Transfer failed"

160)

Recommendation:

Refinethe error message to provide more context or specificity about the potential reasons
for failure. For example, "Token transfer to pot owner failed.” This would make debugging
and understanding the contract’s behavior easier for developers and users.

BP.2 Contract Upgradability

Description:

The contractdoes not appearto supportupgradability. If bugs are found inthe contract after
deployment, or if new features need to be added, the contract cannot be upgraded without

deploying a new one and migrating state.

95

Recommendation:

If upgradabilityis aconcern, considerimplementing an upgradable smart contract pattern.
However, be cautious as upgradability introduces its own set of complexities and poten-
tial vulnerabilities. Using standardized libraries, such as OpenZeppelin’s upgradable con-
tracts, can help address common pitfalls.

BP.3 Limited Documentation: Loanslnteresr

Description:

The functions in the library are not well-documented. There’s no clarity on what specific
parameters like _rate represent (is it an annual rate, monthly rate, etc.?).

Recommendation:

Include comprehensive documentation for each function, clearly outlining its purpose, ex-
pected inputs, and any assumptions or specific behaviors. This makes the code easier to
maintain and understand for any future developers or auditors.

56

5 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing
methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
used to test mathematical relationships between Solidity instances statically and
variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

57

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

83

6 Conclusion

In this audit, we examined the design and implementation of Clixpesa contract and
discovered several issues of varying severity. Clixpesa Solutions Ltd team addressed
issues raised in the initial report and implemented the necessary fixes, while classifying
the rest as a risk with low-probability of occurrence. Blockhat auditors advised Clixpesa
Solutions Ltd Team to maintain a high level of vigilance and to keep those findings in mind

in order to avoid any future complications.

84

» BLOCKHAT

SECURITY

For a Smart Contract Audit, contact us at contact@blockhat.io

85

mailto:contact@blockhat.io

	Introduction
	About Clixpesa
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Rosca.sol
	Potential Reentrancy Attack in payoutPot Function [CRITICAL]
	Transfer Amount Might Be Zero [CRITICAL]
	Pot Funding Exceeding Goal [HIGH]
	Overfunding Vulnerability [HIGH]
	Missing Update of isPotted [MEDIUM]
	No Member Limit [MEDIUM]
	Recipient and Caller Overlap [MEDIUM]
	Floating Pragma [LOW]
	Reliance on External Contracts [INFORMATIONAL]

	RoscaSpaces.sol
	No Removal or Deletion Mechanism [MEDIUM]
	Lack of Input Validation [LOW]
	Potential Scalability Issue with Data Retrieval [LOW]
	No Emergency Shutdown [LOW]
	Lack of Input Validation for Array Access [LOW]
	No Rate Limiting [LOW]
	Redundant Data Structures [LOW]
	Floating Pragma [LOW]
	Lack of Access Control [INFORMATIONAL]

	LoansInterest.sol
	Lack of Input Validation [MEDIUM]
	Floating Pragma [LOW]

	PersonalSpaces.sol
	Token Address Update Risk [CRITICAL]
	Potential reentrancy attack [CRITICAL]
	Missing Allowance Check before Token Transfer [HIGH]
	Logic Bug: Non-owners can't fund personal spaces [HIGH]
	No way to retrieve ERC20 tokens if sent directly [MEDIUM]
	No way to delete personal spaces [MEDIUM]
	Potential Revert on Already Withdrawn Personal Space [MEDIUM]
	Redundant Goal Amount Check [LOW]
	Ambiguous Function Return [LOW]
	Lack of Input Length Check [LOW]
	Duplicate storage and checks for space IDs [LOW]
	Floating Pragma [LOW]

	P2PLoans.sol
	Borrower Loan Repayment Guarantee [CRITICAL]
	Missing Token Address Check [HIGH]
	Missing Allowance Check [HIGH]
	Unsupported Ether Transactions [MEDIUM]
	Floating Pragma [LOW]
	Unused Variables in Contract [LOW]
	Error Message Inconsistency [LOW]

	CalcTime.sol
	Potential Infinite Loop in _getDayNo and _getOcurranceNo [HIGH]
	Lack of Input Validation [LOW]
	Misleading Comments [LOW]
	Use of block.timestamp [LOW]

	Best Practices
	Misleading Transfer Message
	Contract Upgradability
	Limited Documentation : LoansInteresr

	Static Analysis (Slither)
	Conclusion

